Автор работы: Пользователь скрыл имя, 14 Декабря 2014 в 09:37, реферат
Организм клеткасының химиялық құрамы аса бай және алуан түрлі. Онда көптеген реакцияларға қатысатын және метаболизм түзетін әр түрлі заттар бар. Мұндай алмасу нәтижесінде заттар үздіксіз өзгеріп, ыдырайды және осының арқасында жаңа заттар түзіледі. Алмасу реакциялары белгілі бір қатаң тәртіппен өтеді және әр түрлі ферменттердің әсерімен реттеліп отырады. Тірі клеткада болатын ерекше жағдайлардың арқасында реакциялар жоғары жылдамдықпен өтеді. Клетканың немесе протопластың химиялық құрамына талдау жасағанда, біріншіден, ондағы заттардың аса көптігі мен алуан түрлілігіне, екіншіден, талдау барысында тірі клеткаға тән емес заттардың пайда болуына байланысты көптеген қиындықтар туады.
І. Кіріспе................................................................................................................3
ІІ. Негізгі бөлім..................................................................................................4-29
2.1 Белоктар тұралы жалпы түсінік.................................................................4-8
2.2 Белок конформациясы................................................................................9-17
3. Клеткадағы белок синтезі және оны реттеу..............................................18-22
3.1 ДНҚ репликациясы...................................................................................23-25
3.2 РНҚ құрылысы ..........................................................................................26-27
ІІІ. Қорытынды.................................................................................................28-29
IV. Әдеби шолу................................
1. Белоктардың синтезі рибосомада жүреді;
2. Белоктардың
синтезі үшін қажет энергия
АТФ және ГТФ арқылы
3. 20-ға жуық амин қышқылдары;
4. 20-дан астам аминоацил - т-РНҚ синтетаза ферменті;
5. 20-ға жуық т-РНҚ;
6. Мg2+ ионы, конц 5-8 тМ қажет.
Сонымен барлығы 200-ге жуық макромолекулалар, белоктық факторлар қажет:
Трансляция - цитоплазмада жүретін кезең. Бұл кезең кезінде тек қана 4 әріптік нуклеотидтік тілдің 20 әріптік аминқьшқылының тілге аударылуы ғана жүріп қоймайды, сонымен қатар амин қышқылдарының белоктық тізбектегі өз орнын табу мәселесі шешіледі. Трансляцияның өзі 5 кезеңнен тұрады.[2]
Трансляцияның І-ші кезеңі: амин қышқылдарының активтелуі. Бұл кезеңге қажетті заттар: 20 амин қышқылы, АТФ, Мg2+, 20т-РНҚ, 20 аминоацил -т-РНҚ - синтетаза ферменті. Бұл кезең жиырмадан астам аминоацил - т-РНҚ-синтетаза ферментінің қатысуымен өтеді. Бұлар айрықша талғамдылық көрсететін ферменттер, атап айтқанда осы ферменттің көмегімен амин қышқылы өзіне тән т-РНҚ таныса, т-РНҚ өзіне тән амин қышқылдарын таба алады. Сондықтан бұл ферментті "адаптор" деп те атайды. Аминоацил-т-РНҚ-синтетаза ферменттерінің осындай айрықша қасиет көрсетуіне т-РНҚ-ның құрылысының өзгешілігі жағдай жасайды. [2]
Оның құрылысы үйеңкі
Трансляцияның 2-ші кезеңі - полипептидтік
тізбектің инициациясы. Бұл кезеңге
қажетті компоненттер: и-РНҚ; белок
синтезін бастаушы кодон /АУГ/. Бұл
кодон барлық жағдайда
Бұл кезеңде белок синтезінің
ядролық кезеңінде түзілген, белгілі
бір полипептидтің, амин қышқылдың
құрамы туралы информациясы
Осы активті рибосоманың
Осы
жоғарыда түзілген
Пептидилдік центрде
Ал прокариоттарда әрі қарай
формил тобының қосылу
Метионил - т-РНҚ+ N10- формил – ТГФҚ___ТГФ + формилметионин - т-РНҚ.
Трансляцияның 3-ші кезеңі: элонгация
деген атпен белгілі. Бұл кезеңге
қажетті заттар: екінші кезеңде
түзілген активті рибосома; и-РНҚ-дағы
кодондарға сәйкес келетін
Бұл
кезеңде амин қышқылдарының
2/ Транспептидаза
ферментінің әсерімен метионин
амин
3/ Транслоказа
ферментінің әсер етуімен
Белоктардың синтезі бір
Бактерияларда транскрипция
Трансляцияның 4-ші кезеңі - Терминация яғни синтездің бітуі, аяқталу кезеңі, керекті эаттар:
1/ АТФ;
2/ белок синтезінің біткенін білдіруші и-РНҚ-дағы кодондар;
3/ полипептидтің
рибосомадан босап шығуына
Трансляцияның 5-ші кезеңі - кеңістіктегі
полипептидтік тізбектің
ДНҚ молекуласының осы үш ген орналасқан бөлімін опероң деп атайды да, бірімен-бірі тығыз байланысты болады. Реттеуші ген оператор геніне репрессор арқылы әсер етіп отырса, оператор гені құрылымдық генге әсер етеді
Барлық ферменттік белоктардың синтезін реттеуді үш топқа бөлуге болады:
I/ репрессибилді, яғни белоктардың синтезін тежеу;
2/ индуцибелді, белок синтезінің жылдамдығын арттыру;
3/ конституитивті
немесе кейбір белоктар
I/ Белоктардың синтезін тежеу немесе репресибилді жүйелер кебінесе анаболизм реакцияларына қатысатын ферменттердің синтезінде қолданылады. Мұндай жүйелерде құрылымдық гендер / S - гендер/ тұрақты жұмыс істеп тұрады. Реттеуші геннің қатысуымен активсіз белок - репрессор синтезделеді. Енді осы белок - репрессорды активті күйге көшіру үшін корепрессор қажет. Корепресеордың қызметін кейбір кіші молекулалы заттар, реакция нәтижесінде түзілген немесе реакция аралық заттар, гормондар атқара алады.
2/ Белок
синтезінің жылдамдығын
Бұл жүйе түрінде реттеу катаболизм реакцияларына тән. Мұндай жүйелерде құрылымдық гендер сыртқы орта туғызған жағдайларға тәуелді, яғни клеткаға катаболизм реакцияларына қатысатын ферменттер қажет болғанда ғана жұмыс істейді.[2]
Бұл
жүйелерде реттеуші геннің
Белок
синтезінің осы индуцибелді
3/ Конституитивті немесе синтезделу жылдамдықтары тұрақты болатын белоктар. Мұндай белок - ферменттерінің құрьшымдық гендері тұрақты жұмыс істейді де, басқа геңдердің ықпалы әсер етпейді. Бұл ферменттердің қатарына гликолиз, үш карбон қышқылдарының цикліне қатысатын ферменттер жатады.[2]
3.1 ДНК репликациясы.
Кез келген клетка бөлінер алдында оның ДНҚ молекуласы екі еселенеді және соның нәтижесінде ұрпақ клеткалары алғашқы аналық клеткадағыдай ДНҚ молекуласына ие болады. Олай болса, бөлінетін клетканың ДНҚ-сы дәл өзіне ұқсас тағы бір ДНҚ молекуласын қалай жасайды? 1940 жылы Л. Полинг пен М. Дельбрюк ген (ДНҚ) өзінше бір бейненің қалыбы секілді, ол қалыпқа саз балшық құйып, оның формасын алуға, содан кейін осы формадан қалып етіп пайдаланған алғашқы форманы қайтадан жасауға болады деген пікір айтқан. Яғни, бұл геннің алғашқы құрылымына комплементарлы ДНҚ құрылымы жасалады, одан алғашқы құрылымға сәйкес ДНҚ пайда болады деген сөз. Шынында да ДНҚ-ның бір тізбегін бір бейне десек, оған комплементарлы екінші тізбек оның кері бейнесі болып табылады. Демек, Уотсон мен Крик көрсеткен ДНҚ-ның еселенуінің немесе репликациясының жүру жолы шын мәнінде Полинг пен Дельбрюктің болжамын қайталау десе де болғандай.[1]
Сонымен, ДНҚ мынадай жолмен екі
еселенеді. Алғаш спиральдың екі
тізбегі бір нүктеден бастап
ажырай бастайды. Сонан кейін
бір-бірінен алшақтап ажыраған
әрбір тізбектердің бойына, оларға
сәйкес жаңа тізбек
Әрине, бұл процесті де клеткадағы ферменттер жүргізеді. ДНҚ тізбектерінің бағыттары қарама-қарсы екені белгілі. Жұмысына өте мұқият ферменттер жаңа тізбекті тек бір бағытта, яғни 5'—>3' бағытында ғана жасайды. Олай болса, ферменттер ажыраған тізбектердің біреуінің бойымен жаңа тізбекті жоғарыдан төмен қарай, ал екіншісінің бойымен төменнен жоғары қарай синтездейді. Ең қызығы жаңа тізбектер үздіксіз жасалмайды, ескі тізбектің бойында бірінен кейін бірі шағын ДНҚ фрагменттері пайда болып отырады. Ондай фрагменттердің ұзындығы қарапайым бактерияларда 200 нуклеотидтен тұрса, күрделі организмдерде ол 2000-ға жуық. Осындай фрагменттерді алғаш байқаған жапон ғалымы Р. Оказаки, сондықтан оларды оказаки фрагменттері деп атайды.[7]
1953 жылы Дж. Уотсон және Ф. Крик
ұсынған ДНҚ құрылымының үлгісі
(моделі) генетикалық хабардың кодын
(шартты қысқарту), мутациялық өзгергіштіктің
және гендердің көшірмесінің (ДНҚ
молекуласының бөліктері) алынуын
түсінуге мүмкіншілік берді. 1957 жылы
М. Мезельсон мен Ф. Сталь, Дж. Уотсон
және Ф. Криктің бактериялық