Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 22:20, реферат
Биосинтез белка-это процесс, с помощью которого биологических клеток генерировать новые белки; это компенсируется потеря клеточных белков viadegradation или экспорта. Translation, сборка белка рибосомами, является неотъемлемой частью процесса биосинтеза, вместе с поколением матричной РНК (мРНК), аминоацилирования передачи РНК (тРНК), co-поступательного транспорта, и посттрансляционные модификации. Биосинтез белка строго регламентирован, в нескольких действия и проверки ошибок механизмов.
Protein biosynthesis
RNA is transcribed in the nucleus; once completely processed, it is transported to the cytoplasm and translatedby the ribosome (shown in very pale grey behind the tRNA).
Protein biosynthesis is the process by which biological cells generate new proteins; it is balanced by the loss of cellular proteins
viadegradation or export. Tran
The cistron DNA
is transcribed into a variety of RNA intermediates. The last version
is used as a template in synthesis of a polypeptidechain. Protein will often be synthesized directly
from genes by translating mRNA
In protein synthesis, a succession of tRNA molecules charged with appropriate amino acids are brought together with an mRNA molecule and matched up by base-pairing through the anti-codons of the tRNA with successive codons of the mRNA. The amino acids are then linked together to extend the growing protein chain, and the tRNAs, no longer carrying amino acids, are released. This whole complex of processes is carried out by the ribosome, formed of two main chains of RNA, called ribosomal RNA (rRNA), and more than 50 different proteins. The ribosome latches onto the end of an mRNA molecule and moves along it, capturing loaded tRNA molecules and joining together their amino acids to form a new protein chain.[2]
Protein biosynthesis, although very similar, is different for prokaryotes and eukaryotes
Transcription
Diagram showing the process of transcription
In transcription an mRNA chain is generated, with one strand of the DNA double helix in the genome as a template. This strand is called the template strand. Transcription can be divided into 3 stages: initiation, elongation, and termination, each regulated by a large number of proteins such as transcription factors and coactivators that ensure that the correct gene is transcribed.
Transcription occurs in the cell nucleus, where the DNA is held. The DNA structure of the
cell is made up of two helixes made up of sugar and phosphate held together
by hydrogen bonds between the bases of opposite strands. The sugar and
the phosphate in each strand are joined together by stronger phosphodiester covale
The first product of transcription differs in prokaryotic cells from that of eukaryotic cells, as in prokaryotic cells the product is mRNA, which needs no post-transcriptional modification, whereas, in eukaryotic cells, the first product is called primary transcript, that needs post-transcriptional modification (capping with 7-methyl-guanosine, tailing with a poly A tail) to give hnRNA (heterophil nuclear RNA). hnRNA then undergoes splicing of introns (noncoding parts of the gene) via spliceosomes to produce the final mRNA.
Translation
Diagram showing the process of translation
Diagram showing the translation of mRNA and the synthesis of proteins by a ribosome
The synthesis of proteins is known as translation. Translation occurs in the cytoplasm, where the ribosomes are located. Ribosomes are made of a small and large subunit that surround the mRNA. In translation, messenger RNA (mRNA) is decoded to produce a specific polypeptide according to the rules specified by the trinucleotide genetic code. This uses an mRNA sequence as a template to guide the synthesis of a chain of amino acids that form a protein. Translation proceeds in four phases: activation, initiation, elongation, and termination (all describing the growth of the amino acid chain, or polypeptide that is the product of translation).
In activation, the correct amino acid (AA) is joined to the correct transfer RNA (tRNA). While this is not, in the technical sense, a step
in translation, it is required for translation to proceed. The AA is
joined by its carboxyl group to the 3' OH of the tRNA by an ester bond.
When the tRNA has an amino acid linked to it, it is termed "charged".
Initiation involves the small subunit of the ribosome binding to 5'
end of mRNA with the help of initiation factors (IF), other proteins that assist the process. Elongation
occurs when the next aminoacyl-tRNA (charged tRNA) in line binds to
the ribosome along with GTP and an elongation factor. Termination of the polypeptide happens when the
A site of the ribosome faces a stop codon (UAA, UAG, or UGA). When this
happens, no tRNA can recognize it, but releasing factor can recognize nonsense codons and causes the release
of the polypeptide chain. The capacity of disabling or inhibiting translation
in protein biosynthesis is used by some antibiotics such as anisomycin, cycloheximide,
Events following protein translation[edit]
Main articles: Posttranslational modification and Protein folding
The events following biosynthesis include post-translational modification and protein folding. During and after synthesis, polypeptide chains often fold to assume, so called, native secondary and tertiary structures. This is known as protein folding.