Автор работы: Пользователь скрыл имя, 23 Ноября 2012 в 20:41, доклад
Клетка - элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению, является единицей строения, функционирования и развития всех живых организмов.
Клетки всех живых организмов гомологичны по строе¬нию, сходны по химическому составу и основным проявле¬ниям жизнедеятельности.
Размножение клеток происходит путем деления исходной материнской клетки.
В многоклеточном организме клетки специализируют¬ся по функциям и образуют ткани, из которых построены орга¬ны и системы органов, связанные между собой межклеточны¬ми, гуморальными и нервными формами регуляции.
Цитология (греч. цитоз - ячейка, клетка) - наука о клетке. Предметом цитологии является клетка как структурная и функциональная единица жизни.В задачи цитологии входит изучение строения и функционирования клеток, их химического состава, функций отдельных клеточных компонентов, познание процессов воспроизведения клеток, приспособления к условиям окружающей среды, исследование особенностей строения специализированных клеток, этапов становления их особых функций, развитие специфических клеточных структур и др. Для решения этих задач в цитологии используются различные методы.
Основным методом исследования клеток является световая микроскопия. Для изучения мелких структур применяют оптические приборы - микроскопы. Разрешающая способность микроскопов составляет 0,13-0,20 мкм, т. е. примерно в тысячу раз выше разрешающей способности человеческого глаза. С помощью световых микроскопов, в которых используется солнечный или искусственный свет, удается выявить многие детали внутреннего строения клетки: отдельные органеллы, клеточную оболочку и т. п.
Ультратонкое строение клеточных структур изучают с помощью метода электронной микроскопии. В отличие от световых в электронных микроскопах вместо световых лучей используется пучок электронов. Разрешающая способность современных электронных микроскопов составляет 0,1 нм, поэтому с их помощью выявляют очень мелкие детали. В электронном микроскопе видны биологические мембраны(толщина 6-10 нм), рибосомы (диаметр около 20 нм), микротрубочки (толщина около 25 нм) и другие структуры.
Для изучения химического состава, выяснения локализации отдельных химических веществ в клетке широко используются методы цито - и гистохимии, основанные на избирательном действии реактивов и красителей на определенные химические вещества цитоплазмы.
Метод дифференциального центрифугирования позволяет детально исследовать химический состав органелл клетки после их разделения с помощью центрифуги.
Метод рентгеноструктурного анализа дает возможность определять пространственное расположение и физические свойства молекул (например, ДНК, белков), входящих в состав клеточных структур.
Для выявления локализации мест синтеза биополимеров, определения путей переноса веществ в клетке, наблюдения за миграцией или свойствами отдельных клеток широко используетсяметод авторадиографии - регистрации веществ, меченных радиоактивными изотопами. Многие процессы жизнедеятельности клеток, в частности деление клетки, фиксируют с помощью кино-и фотосъемки.
Для изучения клеток органов и тканей растений и животных, процессов деления клетки, их дифференциации и специализации используют метод клеточных культур - выращивание клеток (и целых организмов из отдельных клеток) на питательных средах в стерильных условиях.
При исследовании живых клеток, выяснении функций отдельных органелл используют метод микрохирургии - оперативное воздействие на клетку, связанное с удалением или имплантированием отдельных органелл, их пересаживанием из клетки в клетку, введением в клетку крупных макромолекул.
Исследования клетки имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека - сахарный диабет. Причина этого заболевания - недостаточная деятельность группы клеток поджелудочной железы, вырабатывающих гормон инсулин, который участвует в регуляции сахарного обмена организма. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток. Возбудители кокцидиоза - опасного заболевания кроликов, кур, гусей и уток - паразитические простейшие - кокцидии проникают в клетки кишечного эпителия и печени, растут и размножаются в них, полностью нарушают обмен веществ, а затем разрушают эти клетки. У больных кокцидиозом животных сильно нарушается деятельность пищеварительной системы и при отсутствии лечения животные погибают. Вот почему изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также в медицине и ветеринарии.
Открытие клетки принадлежит английскому естествоиспытателю Р. Гуку, который в 1665 г. впервые рассмотрел тонкий срез пробки в усовершенствованном им микроскопе. На срезе было видно, что пробка имеет ячеистое строение, подобно пчелиным сотам. Эти ячейки Р. Гук назвал клетками. Вслед за Гуком клеточное строение растений подтвердили итальянский врач и микроскопист М. Мальпиги (1675) и английский ботаник Н. Грю (1682). Их внимание привлекли форма клеток и строение их оболочек. В результате было дано представление о клетках как о «мешочках» или «пузырьках», наполненных «питательным соком».
Значительный вклад в
изучение клетки внес голландский микроскопист
А. ван Левенгук, открывший в 1674 г.
одноклеточные организмы - инфузории,
амебы, бактерии. Он также впервые наблюдал
Дальнейшее усовершенствование микроскопа и интенсивные микроскопические исследования привели к установлению французским ученым Ш. Бриссо-Мирбе (1802,1808) того факта, что все растительные организмы образованы тканями, которые состоят из клеток. Еще дальше в обобщениях пошел французский ученый Ж. Б. Ламарк (1809), который распространил идею Бриссо-Мирбе о клеточном строении и на животные организмы.
В начале XIX в. предпринимаются попытки изучения внутреннего содержимого клетки. В 1825 г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. В 1831 г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а ее содержимое.
Многочисленные наблюдения по строению клетки, обобщение накопленных данных позволили немецкому зоологу Т. Шванну в 1839 г. сделать ряд обобщений, которые впоследствии назвали клеточной теорией. Он показал, что клетки растений и животных принципиально сходны между собой.
Дальнейшее развитие клеточной теории получило в работах Р. Вирхова (1858), который предположил, что клетки образуются из предшествующих материнских клеток. В 1874 г. Русским ботаником И. Д. Чистяковым, а в 1875 г. польским ботаником Э. Страсбургером было открыто деление клетки - митоз и, таким образом, подтвердилось предположение Р. Вирхова.
Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужила фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основы для понимания жизни, индивидуального развития, для объяснения эволюционной связи между организмами.