Автор работы: Пользователь скрыл имя, 12 Декабря 2013 в 18:51, реферат
При дигибридном скрещивании Г. Мендель изучал наследование признаков, за которые отвечают гены, лежащие в разных парах гомологичных хромосом. В связи с этим каждая гамета должна содержать по одному гену из каждой аллельной пары. Для скрещивания были взяты две исходные гомозиготные родительские формы: первая форма имела желтые и гладкие семена; вторая форма обладала зелеными и морщинистыми семенами.
Мендель перешёл к изучению дигибридного скрещивания. Дигибридное скрещивание - это скрещивание, в котором участвуют две пары аллелей (парные гены - аллельные и располагаются только в гомологичных хромосомах).
При дигибридном скрещивании Г. Мендель изучал наследование признаков, за которые отвечают гены, лежащие в разных парах гомологичных хромосом. В связи с этим каждая гамета должна содержать по одному гену из каждой аллельной пары. Для скрещивания были взяты две исходные гомозиготные родительские формы: первая форма имела желтые и гладкие семена; вторая форма обладала зелеными и морщинистыми семенами. Желтый цвет и гладкие семена - доминантные признаки; зеленый цвет и морщинистые семена -рецессивные признаки. Гибриды первого поколения- скрещивались между собой, и во втором поколении наблюдалось расщепление по фенотипу в соотношении 9:3:3:1, или (3+1)2. Таким образом, при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1 )п, где п - число пар альтернативных признаков.
Закон независимого комбинирования признаков гласит:
При скрещивании гомозиготных особей, отличающихся по двум или нескольким парам альтернативных признаков, во втором гибридном поколении наблюдается независимое комбинирование этих признаков, в результате чего поручаются новые формы, обладающие несвойственными родителям сочетаниями признаков.
Схему дигибридного скрещивания удобно записывать в специальной таблице – так называемой решётке Пеннета; при этом количество возможных ошибок при определении генотипа потомства сводится к минимуму. Все генотипы мужских гамет вносятся в заголовки вертикальных столбцов, а все генотипы женских гамет – в заголовки горизонтальных. Если вернуться к примеру с семенами гороха, то можно выяснить, что вероятность появления во втором поколении особей с гладкими семенами (доминантный аллель) равняется 3/4, с морщинистыми семенами – 1/4 (рецессивный аллель), с жёлтыми семенами – 3/4 (доминантный аллель) и с зелёными семенами – 1/4 (рецессивный аллель). Таким образом, вероятности сочетания аллелей в генотипе равны:
- гладкие и жёлтые – 9/16 (3/4 ∙ 3/4);
- гладкие и зелёные – 3/16 (3/4 ∙ 1/4);
- морщинистые и жёлтые – 3/16 (1/4 ∙ 3/4);
- морщинистые и зелёные – 1/16 (1/4 ∙ 1/4);
Решётка Пеннета
Последние исследования показали, что наследственные признаки могут передаваться не только в хромосомах, но и через цитоплазму (будучи локализованными в генетическом материале митохондрий и пластид). Цитоплазматическая наследственность передаётся только по материнской линии (при оплодотворении митохондрии и пластиды из мужских половых клеток не попадают в зиготу).
Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось. что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).
Законы Г. Менделя выполняются при следующих условиях:
а) гены, контролирующие анализируемые признаки, расположены в разных парах гомологичных хромосом;
б) равная вероятность образования и выживания гамет и зигот всех типов;
в) отсутствие избирательности оплодотворения. Нарушение хотя бы одного из перечисленных условий вызывает отклонение от ожидаемого расщепления в потомстве гибридов.
Из схемы видно, что в F2 возможны 16 комбинаций, а именно: расщепление по фенотипу будет следующим: 9 желтых гладких (в генотипе должны быть хотя бы по одной доминантной аллели каждого гена, а именно «А-В-»); 3 желтых морщинистых (в генотипе должна быть хотя бы одна доминантная аллель «А» и две рецессивные аллели «вв»); 3 зеленых гладких (в генотипе должны быть две рецессивные аллели «аа» и хотя бы одна доминантная аллель «В»); 1 зеленая морщинистая (в генотипе должны быть только рецессивные аллели обоих генов). Расщепление по генотипу происходит в соотношении: 1 (ААВВ) : 2 (ААВв) : 1 (ааВВ) : 2 (АаВВ) : 4 (АаВв) : 2 (Аавв) : 1 (ААвв) : 2 (ааВв) : 1 (аавв).
При анализе трех и более пар альтернативных признаков скрещивание называется полигибридным. Если родители будут отличаться по трем парам признаков и иметь генотип АаВвСс, т.е. являться тригетерозиготными (гетерозиготными по трем парам альтернативных признаков), то возможные варианты их гамет будут следующими: ABC, ABc, АвС, аВС, Авс, аВс, авС, авс. В этом случае в потомстве образуется 64 комбинации, а расщепление будет наблюдаться в следующем соотношении: 27 (А-В-С-) : 9 (А-В-сс) : 9 (А-ввС-): 9 (ааВ-С-): 3 (А-ввсс): 3 (ааВ-сс): 3 (ааввС-): 1 (ааввсс).