Автор работы: Пользователь скрыл имя, 16 Декабря 2012 в 21:20, реферат
Структура и свойства
1. G-белки - гетеротримеры, в которых α-субъединица непрочно связана с димером β-γ.
2. Все известные α-субъединицы (мол. масса – 50кДа) гомологичны, и у большинства из них одинаковые (или очень сходные) b-субъединицы (мол. масса З5кДа) и γ-субъединицы (мол. масса 8кДа).
З. α-субъедин
1. G-белки - гетеротримеры, в которых α-субъединица непрочно связана с димером β-γ.
2. Все известные α-субъединицы (мол. масса – 50кДа) гомологичны, и у большинства из них одинаковые (или очень сходные) b-субъединицы (мол. масса З5кДа) и γ-субъединицы (мол. масса 8кДа).
З. α-субъединица определяет специфичность связывания G-белка с рецептором и эффектором, уникальна для каждого G-белка.
4. α-субъединица связывает и гидролизует ГТФ (ГТФ-аза).
5. α-субъединица содержит высоко
консервативный домен
6. Выявлены участки связывания гуаниновых нуклеотидов и участки взаимодействия с рецепторами (С-конец) и βγ-димерами (N-конец).
7. Выявлены участки АDР-
G-белки локализованы на внутренней поверхности плазматической мембраны. Первичная структура всех субъединиц G-белков не содержит гидрофобных, пронизывающих мембрану доменов.
1. Ассоциации G-белков с мембраной содействует ацилирование жирнокислотными радикалами. Выявлено два типа липидных модификаций субъединиц G-белков: миристоилирование и изопренилирование белковой цепи.
2. Показано для α-субъединиц Go - и Gi-белков посттрансляционное миристоилирование со стороны N-конца.
З. Для βγ-субъединиц также показаны посттрансляционные модификации (ацилирование).
4. Выявлены три последовательные посттрансляционные модификации, ответственные за связывание ras-белков с мембраной.
5. Очищенные α-субъединицы проявляют гидрофильные свойства (без βγ - комплекса не могут связываться с искусственными фосфолипидными пузырьками).
G-белки (ГТФ-связывающие белки) - универсальные посредники при передаче сигналов от рецепторов к ферментам клеточной мембраны, катализирующим образование вторичных посредников гормонального сигнала. G-белки - олигомеры, состоящие из α, β и γ-субъединиц. Состав димеров βγ незначительно различаются в разных тканях, но в пределах одной клетки все G-белки, как правило, имеют одинаковый комплект βγ-субъединиц. Поэтому G-белки принято различать по их α-субъединицам. Выявлено 16 генов, кодирующих различные α-субъединицы G-белков. Некоторые из генов имеют более одного белка, вследствие альтернативного сплайсинга РНК.
Каждая а-субъединица в составе G-белка имеет специфические центры:
связывания ГТФ или ГДФ;
взаимодействия с рецептором;
связывания с βγ-субъединицами;
фосфорилирования под действием протеинкиназы С;
взаимодействия с ферментом аденилатциклазой или фосфолипазой С.
В структуре G-белков отсутствуют α-спиральные, пронизывающие мембрану домены. G-белки относят к группе "заякоренных" белков.
ГТФ-связываюшие белки управляют несколькими мембранными ферментами и рядом ионных каналов.
Вероятно с G-белками взаимодействует цитоскелет, благодаря чему гормоны регулируют секрецию и эндоцитоз.
Различают неактивную форму G-белка - комплекс αβγ-ГДФ и активированную форму αβγ-ГТФ. Активация G-белка происходит при взаимодействии с комплексом активатор-рецептор, изменение конформации G-белка снижает сродство α-субъединицы к молекуле ГДФ и увеличивает к ГТФ.
Замена ГДФ на ГТФ в активном центре G-белка нарушает комплементарность между α-ГТФ и βγ-субъединицами. Рецептор, связанный с сигнальной молекулой, может активировать большое количество молекул G-белка, таким образом обеспечивая усиление внеклеточного сигнала на этом этапе.
Активированная α-субъединица G-белка (α-ГТФ) взаимодействует со специфическим белком клеточной мембраны и изменяет его активность. Такими белками могут быть ферменты аденилатциклаза, фосфолипаза С, фосфодиэстераза цГМФ, Nа+-каналы, K+-каналы.
Следующий этап цикла функционирования G-белка - дефосфорилирование ГТФ, связанного с α-субъединицей, причём фермент, катализирующий эту реакцию, - сама α-субъединица.
Дефосфорилирование приводит к образованию комплекса α-ГДФ, который не комплиментарен специфическому белку мембраны (например аденилатциклазе), но имеет высокое сродство к βγ-протомерам. G-белок возвращается к неактивной форме - αβγ-ГДФ. При последующей активации рецептора и замене молекулы ГДФ на ГТФ цикл повторяется снова. Таким образом, αβγ-субъединицы G-белков совершают челночное движение, перенося стимулирующий или ингибирующий сигнал от рецептора, который активирован первичным посредником (например, гормоном), на фермент, катализирующий образование вторичного посредника.
Некоторые формы протеинкиназ могут фосфорилировать α-субъединицы G - белков. Фосфорилированная α-субъединица не комплиментарна специфическому белку мембраны, например аденилатциклазе или фосфолипазе С, поэтому не может участвовать в передаче сигнала.
Фосфолипазы - ферменты класса гидролаз, катализирующие катаболизм глицерофосфолипидов. Различают фосфолипазы секреторные, входящие в состав панкреатического сока, и клеточные фосфолипазы. Клеточные фосфолипазы А1, А2, D, С различаются по специфичности к отщепляемой группе. Все фосфолипазы - кальций зависимые ферменты.
Фосфолипаза С - фермент, гидролизующий фосфоэфирную связь в глицерофосфолипидах. В клетках человека идентифицировано 10 изоформ фосфолилазы С, различающихся по молекулярной массе, локализации, способу регуляции, субстратной специфичности. В структуре всех изоформ фосфолипазы С отсутствуют гидрофобные домены, которые могли бы обеспечить их взаимодействие с мембраной. Однако некоторые формы фосфолипазы С связаны с мембраной с помощью гидрофобного "якоря" - ацильного остатка миристиновой кислоты или за счёт взаимодействия с поверхностью бислоя. Каталитическая активность всех изоформ фосфолипазы С зависит от ионов кальция.
Большинство фосфолипаз С специфично
в отношении фосфатидилинозитолов и практически
не гидролизует другие типы фосфолипидов.
Активный фермент может гидролизовать
до 50% от общего количества фосфатидилинозитолов
клеточной мембраны. При гидролизе фосфатидилинозитол-4,5-
Функционирование
Последовательность событий, приводящих к активации фосфолипазы С:
связывание сигнальной молекулы, например гормона с рецептором (R) вызывает изменение конформации и увеличение сродства к Gplc-белку.
образование комплекса [Г] [R] [Gрlс ГДФ] приводит к снижению сродства α-протомера G рlс белка к ГДФ и увеличению сродства к ГТФ. ГДФ заменяется на ГТФ.
это вызывает диссоциацию комплекса; отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С.
α-ГТФ взаимодействует с
в ходе гидролиза образуется и выходит в цитозоль гидрофильное вещество инозитол-1,4,5-трифосфат (ИФ3). Другой продукт реакции диацилглицерол (ДАГ) остаётся в мембране и участвует в активации фермента протеинкиназы С (ПКС).
инозитол-1,4,5-трифосфат (ИФ3) связывается специфическими центрами Са2 - канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала - СаІ+ поступает в цитозоль. В отсутствие в цитозоле ИФ3 канал закрыт.
Активация протеинкиназы С.
• Повышение концентрации СаІ+ в цитозоле клетки увеличивает скорость
взаимодействия СаІ+ с неактивным цитозольным ферментом протеинкиназой С(ПКС) и белком кальмодулином, таким образом сигнал, принятый рецептором клетки, раздваивается.
• Связывание протеинкиназы С с ионами кальция позволяет ферменту вступать в кальций-опосредованное взаимодействие с молекулами "кислого" фосфолипида мембраны, фосфатидилсерина (ФС). Диацилглицерол, занимая специфические центры в протеинкиназе С, ещё более увеличивает её сродство к ионам кальция.
• На внутренней стороне мембраны образуется ферментативный комплекс - [ПКС] [СаІ+] [ДАГ] [ФС] - активная протеинкиназа С, фосфорилирующая специфические ферменты по серину и треонину.
В клетках многих тканей присутствует белок кальмодулин, который функционирует как внутриклеточный рецептор СаІ+, он имеет 4 центра для связывания СаІ+. Комплекс [кальмодулин] - [4СаІ+] не обладает ферментативной активностью, но взаимодействие комплекса с различными белками и ферментами приводит к их активации.
Как и большинство систем трансмембранной
передачи сигналов, инозитолфосфатная
система имеет не только механизм усиления,
но и механизм подавления сигнала. Присутствующие
в цитозоле инозитол-1,4,5-трифосфат ((ИФ3)
и диацилглицерол (ДАГ) в мембране могут
в результате серии реакций опять превращаться
в фосфатидилинозитол-4,5-
Концентрация СаІ+ в клетке снижается до исходного уровня при действии СаІ+-АТФ-аз цитоплазматической мембраны и ЭР, а также Na+/СаІ+-и Н+/СаІ+-транслоказ (активный антипорт) клеточной и митохондриальной мембран.
Функционирование транслоказ СаІ+ и СаІ+-АТФ-аз может активироваться:
комплексом [камьмодулин] [4 Са] ;
протеинкиназой А (фосфорилированием);
протеинкиназой С (фосфорилированием). Понижение концентрации Са2 в клетке и диацилглицерола в мембране приводит к изменению конформации протеинкиiiазы С, снижению её сродства к фосфатидилсерину, фермеiтт диссоциирует в цитозоль (неактивная форма).
Фосфорилированные протеинкиназой С ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму.
α-субъединица играет главную роль в функционировании G-белков. Она связывает ГТФ. Она обратимо взаимодействует с β и γ субъединицами, присоединяясь к ним, когда в центре находится ГДФ и диссоциируя, когда в центре ГТФ. При связывании ГТФ α субъединица активируется и приобретает способность регулировать эффекторные системы внутриклеточные. α субъединицы части G-белков могут подвергаться химическим модификациям. Под воздействием холерного и коклюшного токсинов происходит ФДФ-риболизирование белков по аргининовому и цистеиновому остатку на С-конце, в результате чего нарушается нормальное функционирование G-белков.
Кроме того, протеинкиназа С может фосфорилировать α-субъединицу очищенного G-белка, а in vivо белка Gz. По-видимому белки при этом инактивируются.
Большинство G-белков имеет α-субъединицы с молекулярным весом около 40 Кд.
Бета и гамма субъединицы образуют комплекс друг с другом, распадающийся только в денатурирующих условиях. До конца их роль не ясна. В экспериментах с трансдуцином, а затем с белком Gi было показано, что субъединицы бета и гамма необходимы для взаимодействия G-белка с рецептором и замещения ГДФ на ГТФ.
Бета-гамма комплекс прочно связан с мембраной и служит якорем для α-субъединицы. При отделении α-субъединицы бета-гамма комплекс может переходить в цитоплазму.
Кроме связывания и ингибирования активности α-субъединицы бета - гамма комплекс в некоторых случаях оказывает прямое воздействие на эффекторные системы клетки. Он активирует фосфолипазу А2, взаимодействует с кальмодулином благодаря чему ингибирует активность аденилатциклазы мозга. G-бета-гамма комплекс ингибирует стимуляцию
АС1 по средством Gs-альфа.
АС2 стимулируется связыванием G-бета-гамма, но только в присутствии Gs - альфа.
АС3 также стимулируется G-бета-
Фосфорилирование рецепторов является одним из механизмов регуляции их активности. βγ-субъединицы G-белков могут осуществлять отрицательную обратную связь, активируя протеинкиназы, которые фосфорилируют рецепторы. Эти протеинкиназы называются GRК. К GRК протеинкиназам относятся родопсинкиназа и β-адренергическая киназа. Фосфорилирование приводит к удалению рецептора киназа. Например, мускариновые и адренорецепторы, фосфорилированные по серину и треонину на С-концевом домене, становятся мишенью для связывания арристина, что подготавливает их для удаления эндоцитозом. Обычно на С-конце рецептора есть несколько участков для фосфорилирования различными протеинкиназами. Известно, что слабый стимул (низкая концентрация агониста) активирует протеинкиназу А, а сильный стимул активирует b-АRК протеинкиназу, которая, фосфорилируя рецептор, прерывает передачу сигнала на аденилатциклазу и прекращает производство сАМР. Фосфорилирование, осуществляемое протеинкиназой А происходит тогда, когда занято 10% рецепторов. При этом фосфорилирование уже других, не занятых, рецепторов приводит к освобождению βγ-субъединиц и соответствующему фосфорилированию другой протеинкиназой b-АRК.
βγ-субъединицьт обеспечивают локализацию, эффективное связывание и дезактивацию α-субъединиц, регулируют сродство рецепторов к их активирующим лигандам, понижают способность GDР к диссоциации от субъединицы (стабилизация инактивированного состояния), открывает мускариновый К+-канал в сердце, закрывают Са2+ - канал в пресинаптической мембране, активируют фосфолипазу РLА2 и некоторые изоформы фосфолипазы С, регулируют сродство рецептора к агонисту.