Автор работы: Пользователь скрыл имя, 30 Сентября 2013 в 19:31, реферат
Надзвичайно важливим серед досягнень мікробіології останньої чверті XIX ст. є відкриття неклітинних форм життя — вірусів. Тоді багато вчених вважали, що бактерії є найменшими і найпростішими організмами, і що саме вони стоять на межі живої і неживої природи.
Захворювання рослин, тварин і людини, вірусна природа яких у даний час установлена, у протягом багатьох сторіч завдавали шкоди господарству і здоров'ю людини. Хоча багато з цих хвороб були описані, але спроби встановити їхню причину і виявити збудник залишались безуспішними.
Вступ
Розділ 1. Характеристика генетичного апарату бактерій
1.1 Гени та генетична карта
1.2 Фенотипова і генотипова мінливість прокаріот
1.3 ДНК бактерій
Розділ 2. Генетичні процеси в клітинах мікроорганізмів
2.1 Генетичні рекомбінації у бактерій: трансформація, конюгація, трансдукція
2.2 Регуляція генної активності
2.3 Позахромосомні фактори спадковості
2.4 Використання на практиці досягнень генетики мікроорганізмів
Висновки
Список використаної літератури
За характером розміщення перенесених ознак розрізняють зчеплену трансформацію – перенесення двох і більше генів, які розміщені поруч, одним фрагментом ДНК.
Незчеплена тренсформація – перенесення генів різними фрагментами ДНК, або одним, Але гени не розміщені поруч.
В результаті трансформації утворюються трансформанти, які мають ознаки донора і реціпієнта. Рекомбінантна ДНК далі реплікується як єдина структура. Трансформація може здійснюватися як в лабораторних умовах так і в природі. Трансформацію в бактерій використовують для проведення гібридологічного аналізу різних мутацій, для встановлення філогенетичної подібності донора і реціпієнта.
Кон’югація (лат. conjugatio спряження бактерій) – передача генетичного матеріалу від однієї клітини до другої шляхом безпосереднього контакту між ними.Вперше була вивчена в 1946 р. Дж. Ледербергом і Е. Татумом при культивуванні кишкової палочки.
Пізніше було показано, що між кон’югуючими клітинами утворюється цитоплазматичний мостик і втановлено наявність статевої деференціації. При кон’югації одна бактерія є донором — чоловіча клітина F+ (анг. fertility — плодючість), друга — реціпієнтом — жіноча клітина F—.
Статева диференціація зумовлена статевим фактором (F фактор), який є лише в чоловічих клітинах. Статевий фактор — це дволанцюгова ДНК, яка має форму кільця. Вона зумовлює ряд властивостей чоловічих клітин — наявність статевих ворсинок F-пілі, спецефічну чутливість клітин-донорів до “чоловічих” дрібних РНК і ДНК-вмісних фагів. За допомогою статевих ворсинок чоловіча клітина прикріпляється до жіночої і через їх канальці відбувається перенесення генетичного матеріалу. Якщо схрещувати між собою жіночі клітини, то рекомбінанти не утворюються.
Статевий фактор може існувати в клітині автономно (поза хромосомою). Його відносять до групи бактеріальних плазмід. Але поряд з цим, існують клітини, в яких статевий фактор інтегрований з хромосомою. Такі плазміди дістали назву епісом — і клітини називаються Hfr – клітинами (висока частота рекомбінації — 10 —3).
Під час кон’югації при передачі ДНК від донора до реціпієнта зберігається цілісність генома донорної клітини. В клітину реціпієнта переноситься одноланцюгова ДНК донора під впливом якої в клітині синтезується комплементарний ланцюг і відновлюється дволанцюгова ДНК. Завершується кон’югація утворенням рекомбінантної бактеріальної хромосоми.
Кон’югація може відбуватися між штамами одного виду, між представниками різних видів. Це приводить до утворення так званих міжвидових рекомбінантів.
Трансдукція — процес перенесення
генетичного матеріалу від
Трансдукцію здійснюють помірні фаги та їх вірулентні мутанти.Суть трансдукції полягає в тому, що деякі помірні фаги в процесі репродукції включають у свій геном невеликі фрагменти ДНК бактерії-донора і переносять їх до бактерій-реціпієнтів.
Фаги діляться на вірулентні і помірні. Вірулентні фаги, проникають в клітину, зумовлюють формування нових фагів і лізис бактерій. Зараження клітин помірними фагами не завжди супроводжується лізисом бактерій, частина їх виживає і стає лізогенними. В лізогенних бактеріях ДНК фага включається в ДНК клітини і помірний фаг перетворюється в профаг, який втрачає здатність руйнувати бактеріальну клітину. Профаг поводить себе так, як частина бактеріальної хромосоми і відтворюється в її складі протягом декількох поколінь.
У бактерій розрізняють 3 типи трансдукції: загальну, специфічну і абартивну.
При загальній трансдукції проходить передача різних фрагментів ДНК від бактерій-донорів до бактерій-реціпієнтів за допомогою помірних трансдукуючих фагів.
Специфічна трансдукція характеризується здатністю фага переносити від бактерій донорів до бактерій реціпієнтів тільки певні гени. Це зумовлено тим, що утворення трансдукуючого фага проходить в результаті з’єднання його ДНК із строго визначеними бактеріальними генами, розміщеними на хромосомі клітини донора.
При абортивній трансдукції перенесений фагом фрагмент хромосоми клітини-донора не включається в хромосому клітини-реціпієнта, а розміщується в її цитоплазмі автономно. В процесі поділу клітини-реціпієнта трансдукований фрагмент ДНК-донора може передаватися тільки одній із двох дочірних клітин, тобто успадковується однолінійно, в зв’язку з чим втрачається в потомстві.
2.2 Регуляція генної активності
Функціональна нерівнозначність
кліток і зв'язана з нею репресія
й активація генів давно
Перша спроба пояснити регуляторну активність генів були зв'язані з вивченням гістонних білків. Ще чоловік і жінка Стедман на початку 40-х років нашого століття одержали перші чіткі результати про розходження в хімічній природі гістонних білків. Подальші дослідження показали, що регуляція генної активності набагато більш складний процес, ніж простої взаємодія ділянок генів з молекулами пістонних білків.
Жакоб і Моно розділили гени регуляторної системи на два типи - гени-регулятори і гени-оператори. Автори ввели в генетику нове поняття, визначивши блок структурних генів і керуючий ними оператор як єдину функціональну одиницю - оперон.
В останні роки були отримані дані про наявність ще одного керуючого осередку генної активності-промоторі. Виявилося, що по сусідству з операторною ділянкою, до якого приєднується продукт - білкова речовина репресор, синтезований на гені-регуляторі, мається інша ділянка, що відноситься до членів регуляторній системі генної активності. До цієї ділянки приєднується молекула ферменту РНК- полімерази. У цій промоторній ділянці повинне відбутися взаємне дізнавання унікальної послідовності нуклеотидов у ДНК і специфічній конфігурації білка РНК- полімерази. Від ефективності дізнавання буде залежати здійснення процесу зчитування генетичної інформації з даної послідовності генів оперона, що примикає до промотору.
2.3 Позахромосомні фактори спадковості
До позахромосомних факторів спадковості відносять плазміди і епісоми, що розташовуються в цитоплазмі клітини. Плазміди не здатні вбудовуватися в нуклеотид бактерії, вони мають власну ДНК, що може самостійно реплікуватися. На противагу плазмідам, епісоми вбудовуються в нуклеотид бактерії і функціонують разом з ним.
Плазміди, не залежно від нуклеотиду, забезпечують здатність до коньюгации, стійкість до антибіотиків і інших речовин. Установлено, що наявність плазмид у клітці не обов'язково, але в теж час їх може бути кілька. Плазміди підрозділяють на кон`югативні (трансмісивні) і некон`югативні (на трансмісивні). Перші - додають клітині властивості генетичного донора, детермінують перенос генетичного матеріалу від клітки донора до клітини реципієнтові, другі - не додають клітині властивостей генетичного донора, не можуть передаватися до клітини реципієнта без наявності факторів переносу.
Розрізняють наступні види плазмід: Соl-фактор - коліциногенний фактор, F-фактор - фактор фертильності, R-фактор - фактор стійкості до лікарських речовин, плазміди біодеградації, плазміди, що кодують фактори вірулентності в мікроорганізмів (Ent, Hly, Sal, K і т.д.)
Col-фактори - це плазміди, що контролюють синтез бактеріоцинів, що володіють здатністю пригнічувати розвиток філіпченкових родинних бактерій. Назва бактеріоциногенів привласнюють з урахуванням виду мікроорганізмів їхній продуцирующих. В даний час відомо, що практично майже всі патогенні бактерії продукують бактеріоцини.
Бактеріоцини кишкової палички називають коліцини, стафілокока - стафілоцини, пневмокока - пневмоцини, вібріона - вібріоцини і т.д.. Краще інших бактеріоцинів вивчені коліцини. Культури кишкової палички, продукуючі коліцини, називають коліциногенами, а чуттєві до них - коліциночутливими. Коліцини - речовини білкової природи. Вони мають здатність ингибировать синтез ДНК, РНК, білка, викликати загибель клітки не порушуючи її цілісності. Коліцини мають летальну ознаку, тобто після їхньої продукції бактеріальна клітка може загинути. Коліцини функціонують аналогічно антибіотикам з вузьким спектром дії, мають властивості ендодезоксирибонуклеаз.
Бактеріальні клітини, що виділяють бактерицини, стійкі до дії гомологічних бактерицинів навколишнього середовища.
F-фактор може функціонувати автономно і може бути в інтегрованому, як епісома, стані. Цей фактор являє собою кільцеву ДНК довжиною 30-32 нм, молекула якої детермінує перенос генетичного матеріалу з клітки донора в клітку реципієнта, синтез полових ворсинок, синтез ферментів, здатність до автономної реплікації і т.д.
R-фактор генетична структура,
що забезпечує стійкість до
лікарських препаратів. Ця структура
несе гени лікарської
Плазміди біодеградації відповідальні за використання органічних сполук бактеріями як джерела вуглецю й енергії, за утилізацію ряду цукрів, утворення протеолітичних ферментів.
Ent-плазміди кодують утворення ентеротоксинів у ентеробактерій, Hly-плазміда - синтез гемолізинів у ентеропатогенних мікроорганізмів і стрептококів. Sal-плазміда контролює в псевдомонад використання бактеріями саліцилатів завдяки виробленню призначеного для цієї мети ферменту.
2.4 Використання на практиці
досягнень генетики
Досягнення генетики мають
важливе значення в сільському господарстві,
промисловому виробництві і в
медицині. Внаслідок утворення
Широкі перспективи відкриває перебудова спадкової природи організмів шляхом генної інженерії.
Очевидно, методом генної
інженерії можна буде створити такі
бактерії, які втратять хвороботворність,
допоможуть виробити імунітет проти
багатьох інфекційних захворювань
людини і тварин. В промисловості
появляться високопродуктивні
Методом генної інженерії будуть створені рослини, які володіють здатністю до зв’язування молекулярного азоту (шляхом трансплантації гена, який відповідає за фіксацію мол. N2 у клітини вищих рослин).
Вивчення генетики бактерій та інших мікроорганізмів має дуже важливе як теоретичне, так і практичне значення для спрямованої селекції високопродуктивних штамів, які останнім часом почали широко застосовуватися у різних галузях народного господарства. Використання в селекції мікроорганізмів методів природного добору, індукованого мутагенезу, популяційної мінливості, клонування, гібридизації соматичних клітин тощо дало можливість одержати високопродуктивні штами мікрорганізмів. Останні знайшли широке застосування в мікробіологічній промисловості для виробництва кормового білка, амінокислот, ферментів, вітамінів, антибіотиків, бактеріальних добрив, засобів захисту рослин, анатоксинів, лікувально-профілактичних препаратів – вакцин, інтерферонів, гормонів, інтерлейкінів та ін. Наприклад, з індукованих мутантів з наступною селекцією їх було одержано штами – продуценти амінокислот, продуктивність яких у сто разів вища від такої у вихідних штамів. Продуцент лізину дає в 300-400 разів більший вихід цієї незамінної амінокислоти, ніж природний штам.
Багатонадійні перспективи для сільського господарста, біології та медицини й інших галузей народного господарста відкриваються у зв’язку з розробкою і вдосконаленням методів генної і клітинної інженерії, за допомогою яких експериментально доведено можливість передачі не тільки природних генів, а й штучно синтезованих, які кодують синтез різноманітних біологічно-активних сполук. Наприклад, ще в перших дослідах з генної інженерії, проведених у 1973 році, було введено за допомогою фага в геном E. coli ген LIG, який контролює синтез лігази. Внаслідок цього вміст лігази в клітинах-реципієнтах збільшився в 500 разів. Тепер у клітини кишкової палички клоновані і функціонують гени інтерферонів, гормону росту, інсуліну та ін. За допомогою клонованих штамів E. coli одержують препарати інтерферону, інсуліну і соматотропіну.
Є також дані про те, що успішно функціонують клоновані у бактерії гени вірусів грипу, гепатиту В, герпесу, ген білка оболонки вірусу ящуру, що в найближчий час дозволить розробити технологію виробництва молекулярних вакцин без баластних білків.
Останнім часом інтенсивно вивчаються методи трансплантації генів за допомогою плазмід, які ще часто називають “генною інженерією у природі”. Вони відіграють велику роль у передачі генетичного матеріалу між бактеріями, які належать навіть до віддалених філогенетичних груп.
Плазміди є фактично каналом генетичної комунікації в бактеріальному світі. Наприклад, методами генної інженерії було зроблено пересадку гена nif з азотфіксуючої бактерії в неазотфіксуючу, і остання набула властивості фіксувати молекулярний азот. Тепер ведуться роботи з перенесення генів від бактерій до клітин вищих рослин.
У лабораторних умовах одержано рекомбінантні плазміди, які містять гени двох різних бактерій, бактерій і вірусів, бактерій і рослин, бактерій і тварин, бактерій і людини. Дуже важливим є те, що такі рекомбінантні плазміди, інродуковані в бактеріальні клітини, дали експресію.
Особливої ваги набувають нині методи одержання енергії та переробки відходів промисловості і сільського господарства з метою одержання цінних біопродуктів і захисту біосфери від забруднення за допомогою мікроорганізмів. Мікробіологічна наука і мікробіологічна індустрія можуть зробити помітний внесок у розв’язання енергетичних проблем, які пов’язані зі значним зменшенням запасів нафти і вугілля на нашій планеті.
Висновки
Найважливішими ознаками живих організмів є мінливість та спадковість. Основу спадкового апарату бактерій, як і всіх інших організмів, складає ДНК. Поряд з цим спадковий апарат бактерій і можливості його вивчення мають ряд особливостей: бактерії - гаплоїдні організми, тобто вони мають 1 хромосому. У зв'язку з цим при спадкуванні ознак відсутнє явище домінантності; бактерії мають високу швидкість розмноження, у зв'язку з чим за короткий проміжок часу (доба) змінюється кілька десятків поколінь бактерій. Це дає можливість вивчати величезні за чисельністю популяції і досить легко виявляти навіть рідкі за частотою мутації. Спадковий апарат бактерій представлений хромосомою. У бактерій вона одна. Якщо і зустрічаються клітини з 2, 4 хромосомами, то вони однакові.
Хромосома бактерій - це молекула ДНК. Довжина цієї молекули досягає 1,0 мм і, щоб "уміститися" у бактеріальній клітині, вона не лінійна, як у еукаріот, а суперспіралізована в петлі і згорнута в кільце.
Информация о работе Генетичні процеси в клітинах мікроорганізмів