Иммобилизация клеток микроорганизмов

Автор работы: Пользователь скрыл имя, 01 Ноября 2015 в 21:54, реферат

Описание работы

Иммобилизация клеток может быть естественным процессом или может быть вызвана химическими или физическими способами. Именно развитие методов управления искусственной или индуцированной иммобилизацией привело в настоящее время к осознанию преимуществ применения в биологических реакторах иммобилизованных клеток. Так, при биологической очистке сточных вод долгое время применяли иммобилизованные клетки, распределенные в виде пленки по твердой поверхности капельного биофильтра, и традиционный способ получения уксуса включает применение клеток Acetobacter, иммобилизованных на березовых прутьях

Файлы: 1 файл

Реферат иммоб клеток.docx

— 32.51 Кб (Скачать файл)

Иммобилизация клеток микроорганизмов

Введение

Иммобилизация – это прикрепление клеток микроорганизмов или ферментов к нерастворимым носителям.

Иммобилизация клеток может быть естественным процессом или может быть вызвана химическими или физическими способами. Именно развитие методов управления искусственной или индуцированной иммобилизацией привело в настоящее время к осознанию преимуществ применения в биологических реакторах иммобилизованных клеток. Так, при биологической очистке сточных вод долгое время применяли иммобилизованные клетки, распределенные в виде пленки по твердой поверхности капельного биофильтра, и традиционный способ получения уксуса включает применение клеток Acetobacter, иммобилизованных на березовых прутьях. Эти процессы, однако, представляют собой примеры иммобилизации, происходящей естественным путем. В настоящее время стала доступной иммобилизация любых микробных или тканевых клеток, что привело к значительному расширению возможностей их применения. Даже в случае очистки сточных вод последние достижения позволили значительно усовершенствовать этот традиционный процесс, основанный на использовании иммобилизованных клеток, за счет увеличения удельной поверхности насадки в системе.

Клеточная иммобилизация как прокариотических, так и эукариотических клеток позволяет создавать биочастицы любого размера, объема и плотности. Одной из важнейших особенностей процесса клеточной иммобилизации является возможность достижения чрезвычайно высокой концентрации клеток, что, наряду с легкостью отделения иммобилизованных клеток от жидкой фазы, обусловливает ряд преимуществ и способов усовершенствования процесса.

Иммобилизованные клетки остаются в реакторе при непрерывном прохождении жидкой фазы, что позволяет контролировать скорость роста клеток вне зависимости от расхода. Можно легко проводить непрерывный процесс даже с не растущими клетками, что невозможно в случае свободно взвешенных клеток.

Возрастание общей продуктивности. Это является прямым следствием сохраняющейся высокой концентрации клеток в реакторе. Легкое разделение клеток и жидкости. Грубое фильтрование или быстрое осаждение под действием силы тяжести позволяет удалить жидкость из реактора, не удаляя клетки. Повторное культивирование с использованием тех же клеток. Отработанную жидкость можно удалить, а сосуд наполнить свежей средой.

Усиливается массообмен между газовой и жидкой фазами. Иммобилизация разрешает проблему вязкости, часто связанную с высокими концентрациями взвешенных клеток, что позволяет улучшить массообмен.

Культуры, применяемые для иммобилизации

 

Методы иммобилизации универсальны для всех видов иммобилизованных биокатализаторов — индивидуальных ферментов, клеток, субклеточных структур, комбинированных препаратов.

Для иммобилизации используются такие ферменты как: Е. Coli, Kluyvervmyces fragilis, К lactis, Aspergillus niger, A oryzae, B. Subtilis, B.licheniformis, B. Thermoproteolyticus, Mucor pusillus.

Наряду с иммобилизацией ферментов в последнее время все большее внимание уделяется иммобилизации клеток и субклеточных структур: Mucobacterium globiformis, Arthrobacter, Aureobacidium pullulan, Bacillus thermoproteoluticus, Erwinia herbicola, Е. Intermedia, Е. Coli. Это объясняется тем, что при использовании иммобилизованных клеток отпадает необходимость выделения и очистки ферментных препаратов, применение кофакторов; создается возможность получения полиферментных систем, осуществляющих многостадийные непрерывно действующие процессы.

В промышленных процессах чаще используют покоящиеся клетки. Для подавления роста иммобилизованных клеток растений используют дефицит фитогормонов, а рост клетки бактерий тормозят добавлением антибиотиков.

Методы иммобилизации клеток

Химический метод

Химический метод основан на образовании ковалентных связей с активированным носителем, на поперечной сшивке клеток за счет активных групп в клеточной оболочке с бифункциональными реагентами (например, глутаровым альдегидом)

Химические методы используются реже по сравнению с другими методами и малопригодны для иммобилизации живых клеток. Гораздо большее распространение получило включение клеток в состав гелей, мембран и волокон. При таком способе иммобилизации клетки могут сохранять жизнеспособность и в присутствии питательной среды размножаться в приповерхностных слоях гелей. Биокаталитическая активность целых иммобилизованных клеток в настоящее время может быть использована в различных отраслях науки и техники:

при биосинтезе и трансформации таких соединений, как аминокислоты, органические кислоты, антибиотики, стероиды углеводы, углеводороды, нуклеотиды и нуклеозиды;

в пивоварении и виноделии;

при очистке сточных и природных вод;

при извлечении металлов из сточных вод;

при ассимиляции солнечной энергии;

при изготовлении водородных солнечных элементов;

в азотфиксации;

в аналитических целях при изготовлении электродов.

 

Пример:

Способ иммобилизации клеток микроорганизмов в сорбент, используемый для очистки нефтезагрязнений

 

Область техники

Изобретение относится к области биотехнологии, создающей средства для очистки окружающей среды. Предлагается новый промышленный способ иммобилизации клеток микроорганизмов в сорбент, используемый для очистки нефтезагрязненных почв и акваторий. Применение биосорбента, получаемого заявляемым способом, позволяет осуществлять очистку больших пространств водной поверхности, болотистых участков и участков суши от последствий разливов нефтепродуктов, в том числе и тонких радужных пленок.

Биосорбент - это сорбент-носитель с иммобилизованными микроорганизмами нефтедеструкторами. Обработка нефтяного пятна биосорбентом блокирует его дальнейшее распространение (эффект физико-химических бонов), что позволяет собрать более 90 % этого загрязнителя. Биоразложение практически решает вопрос утилизации сорбентов после использования, что существенно упрощает их применение.

Сейчас в мире производится или используется для ликвидации разливов нефти около двух сотен различных сорбентов, которые подразделяются на: неорганические, природные органические и органоминеральные, а также синтетические. Такое большое количество различных видов сорбентов свидетельствует о неудовлетворенности потребителей качеством известных сорбентов и поиском новых видов, удовлетворяющих соотношению «цeнa- кaчecтвo». Качество сорбентов определяется главным образом их емкостью по отношению к нефти, степенью гидрофобности (ненамокаемости в воде), плавучестью после сорбции нефти, возможностью десорбции нефти и регенерации или утилизации сорбента.

Физический метод

К физическим методам относятся адсорбция и агрегация.

Аэробная очистка сточных вод

 

Биологическая переработка отходов опирается на ряд дисциплин: биохимию, генетику, химию, микробиологию, вычислительную технику. Усилия этих дисциплин концентрируются на трех основных направлениях:

деградация органических и неорганических токсичных отходов;

возобновление ресурсов для возврата в круговорот веществ углерода, азота, фосфора, азота и серы;

получение ценных видов органического топлива.

При очистке сточных вод выполняют четыре основные операции:

1. При первичной переработке  происходит усреднение и осветление  сточных вод от механических  примесей (усреднители, песколовки, решетки, отстойники).

2. На втором этапе происходит  разрушение растворенных органических  веществ при участии аэробных  микроорганизмов. Образующийся ил, состоящий главным образом из микробных клеток, либо удаляется, либо перекачивается в реактор. При технологии, использующей активный ил, часть его возвращается в аэрационный тенк.

3. На третьем (необязательном) этапе производится химическое  осаждение и разделение азота  и фосфора.

4. Для переработки ила, образующегося на первом и  втором этапах, обычно используется  процесс анаэробного разложения. При этом уменьшается объем  осадка и количество патогенов, устраняется запах и образуется  ценное органическое топливо - метан.

На практике применяются одноступенчатые и многоступенчатые системы очистки. Одноступенчатая схема очистки сточной воды представлена на рис. 6.

 

Рис. 6. Принципиальная схема очистных сооружений:

1 - пескоуловители; 2 - первичные отстойники; 3 - аэротенк; 4 - вторичные отстойники; 5 - биологические пруды; 6 - осветление; 7 - реагентная обработка; 8 - метатенк; АИ - активный ил

Сточные воды поступают в усреднитель, где происходит интенсивное перемешивание стоков с различным качественным и количественным составом. Перемешивание осуществляется за счет подачи воздуха. В случае необходимости в усреднитель подаются также биогенные элементы в необходимых количествах и аммиачная вода для создания определенного значения рН. Время пребывания в усреднителе составляет обычно несколько часов. При очистке фекальных стоков и отходов нефтепереработки необходимым элементом очистных сооружений является система механической очистки - песколовки и первичные отстойники. В них происходит отделение очищаемой воды от грубых взвесей и нефтепродуктов, образующих пленку на поверхности воды.

Биологическая очистка воды происходит в аэротенках. Аэротенк представляет собой открытое железобетонное сооружение, через которое проходит сточная вода, содержащая органические загрязнения и активный ил. Суспензия ила в сточной воде на протяжении всего времени нахождения в аэротенке подвергается аэрации воздухом. Интенсивная аэрация суспензии активного ила кислородом приводит к восстановлению его способности сорбировать органические примеси.

В основе биологической очистки воды лежит деятельность активного ила (АИ) или биопленки, естественно возникшего биоценоза, формирующегося на каждом конкретном производстве в зависимости от состава сточных вод и выбранного режима очистки. Активный ил представляет собой темно-коричневые хлопья, размером до нескольких сотен микрометров. На 70% он состоит из живых организмов и на 30% - из твердых частиц неорганической природы. Живые организмы вместе с твердым носителем образуют зооглей - симбиоз популяций микроорганизмов, покрытый общей слизистой оболочкой. Микрооганизмы, выделенные из активного ила относятся к различным родам: Actynomyces, Azotobacter, Bacillus, Bacterium, Corynebacterium, Desulfomonas, Pseudomonas, Sarcina и др. Наиболее многочисленны бактерии рода Pseudomonas, о всеядности которых упоминалось ранее. В зависимости от внешней среды, которой в данном случае является сточная вода, та или иная группа бактерий может оказаться преобладающей, а остальные становятся спутниками основной группы.

Существенная роль в создании и функционировании активного ила принадлежит простейшим. Функции простейших достаточно многообразны; они сами не принимают непосредственного участия в потреблении органических веществ, но регулируют возрастной и видовой состав микроорганизмов в активном иле, поддерживая его на определенном уровне. Поглощая большое количество бактерий, простейшие способствуют выходу бактериальных экзоферментов, концентрирующихся в слизистой оболочке и тем самым принимать участие в деструкции загрязнений. В активных илах встречаются представители четырех классов простейших: саркодовые (Sarcodina), жгутиковые инфузории (Mastigophora), реснитчатые инфузории (Ciliata), сосущие инфузории (Suctoria).

Показателем качества активного ила является коэффициент протозойности, который отражает соотношение количества клеток простейших микроорганизмов к количеству бактериальных клеток. В высококачественном иле на 1 миллион бактериальных клеток должно приходиться 10-15 клеток простейших. При изменении состава сточной воды может увеличится численность одного из видов микроорганизмов, но другие культуры все равно остаются в составе биоценоза.

На формирование ценозов активного ила могут оказывать влияние и сезонные колебания температуры, обеспеченность кислородом, присутствие минеральных компонентов. Все это делает состав или сложным и практически невоспроизводимым. Эффективность работы очистных сооружений зависит также от концентрации микроорганизмов в сточных водах и возраста активного ила. В обычных аэротенках текущая концентрация активного ила не превышает 2-4 г/л.

Увеличение концентрации ила в сточной воде приводит к росту скорости очистки, но требует усиления аэрации, для поддержания концентрации кислорода на необходимом уровне. Таким образом, аэробная переработка стоков включает в себя следующие стадии: 1) адсорбция субстрата на клеточной поверхности; 2) расщепление адсорбированного субстрата внеклеточными ферментами; 3) поглощение растворенных веществ клетками; 4) рост и эндогенное дыхание; 5) высвобождение экскретируемых продуктов; 6) "выедание" первичной популяции организмов вторичными потребителями. В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. На практике очищенная вода и активный ил из аэротенка подаются во вторичный отстойник, где происходит отделение активного ила от воды. Часть активного ила возвращается в систему очистки, а избыток активного ила, образовавшийся в результате роста микроорганизмов, поступает на иловые площадки, где обезвоживается и вывозится на поля. Избыток активного ила можно также перерабатывать анаэробным путем. Переработанный активный ил может служить и как удобрения, и как корм для рыб, скота.

Система полной доочистки может состоять из множества элементов, которые определяются дальнейшим назначением сточной воды. Возможно применение биологических прудов, где биологически очищенная вода проходит осветление и насыщается кислородом. Пруды также относятся к системе биологической очистки, в которой под воздействием биоценоза активного ила происходит окисление органических примесей. Состав биоценозов биологических прудов определяется глубиной нахождения данной группы микроорганизмов. В верхних слоях развиваются аэробные культуры, в придонных - факультативные аэробы и анаэробы, способные осуществлять процессы метанового брожения или восстановление сульфатов. Насыщение воды кислородом происходит за счет процессов фотосинтеза, осуществляемого водорослями, из которых особенно широко представлены Clorella, Scenedesmus, встречаются эвгленовые, вольвоксовые и т.д. В прудах также в той или иной мере представлена микро- и макрофауна: простейшие, черви, коловратки,насекомые и др. В биопрудах из воды хорошо удаляются нефтепродукты, фенолы и другие органические соединения. В некоторых случаях воду после биологической очистки подвергают реагентной обработке - хлорированию или озонированию.

Информация о работе Иммобилизация клеток микроорганизмов