История открытия и изучения клеточного строения организма

Автор работы: Пользователь скрыл имя, 04 Декабря 2012 в 15:43, реферат

Описание работы

Клетка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами.

Содержание работы

1 История открытия
1.1 Клеточная теория
2 Методы исследования клеток
2.1 Оптическая микроскопия
2.2 Электронная микроскопия
2.3 Фракционирование клеток
3 Строение клеток
3.1 Прокариотическая клетка
3.2 Эукариотическая клетка
4 Строение прокариотической клетки
5 Строение эукариотической клетки
5.1 Поверхностный комплекс животной клетки
5.2 Структура цитоплазмы
5.3 Эндоплазматический ретикулум
5.4 Аппарат Гольджи
5.5 Ядро
5.6 Лизосомы
5.7 Цитоскелет
5.8 Центриоли
5.9 Митохондрии
6 Сравнение прокариотической и эукариотической клеток
6.1 Анаплазия
7 Межклеточные контакты
8 Клеточный цикл
9 Деление клетки
9.1 Деление эукариотических клеток
9.2 Деление прокариотических клеток
10 Дифференцировка клеток многоклеточного организма
11 Клеточная смерть
12 Эволюция клеток
12.1 Возникновение эукариотических клеток
13 Химический состав клетки
Список литературы

Файлы: 1 файл

РЕФЕРАТ БИОЛОГИЯ.docx

— 59.24 Кб (Скачать файл)

8 Клеточный цикл

Клеточный цикл  — это  период существования клетки от момента  её образования путем деления  материнской клетки до собственного деления.

9 Деление клетки

9.1 Деление эукариотических клеток

Амитоз — прямое деление клетки, происходит в соматических клетках эукариот реже, чем митоз. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и другие). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом. При амитозе делится только ядро, причём без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Митоз (от греч. μιτος — нить) — непрямое деление клетки, наиболее распространённый способ репродукции эукариотических клеток, один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяции тканевых клеток. Биологическое значение митоза заключается в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений. Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений. На основании морфологических особенностей митоз условно подразделяется на:

  • профазу,
  • прометафазу,
  • метафазу,
  • анафазу,
  • телофазу.

 

Продолжительность митоза в  среднем составляет 1—2 часа. В клетках животных митоз, как правило, длится 30—60 минут, а в растительных — 2—3 часа. Клетки человека за 70 лет суммарно претерпевают порядка 1014 клеточных делений.

Мейоз (от греч. meiosis — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток или гамет из недифференцированных стволовых. Уменьшение числа хромосом в результате мейоза в жизненном цикле ведёт к переходу от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов. Определённые ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

9.2 Деление прокариотических клеток

Прокариотические клетки делятся надвое. Сначала клетка удлиняется, в ней образуется попе­речная перегородка. На завершающем этапе дочерние клетки расходятся. Отличительной чертой деления прокариотических клеток является непосредственное участие реплицированной ДНК в процессе деления. Обычно прокариотические клетки делятся с образованием двух одинаковых по размеру дочерних клеток, поэтому этот процесс ещё иногда называют бинарным делением. В связи с тем, что в подавляющем большинстве случаев прокариотические клетки имеют клеточную стенку, бинарное деление сопровождается образованием септы — перегородки между дочерними клетками, которая затем расслаивается посередине. Процесс деления прокариотической клетки подробно изучен на примере Escherichia coli.

10 Дифференцировка  клеток многоклеточного организма

Многоклеточные организмы  состоят из клеток, которые в той  или иной степени отличаются по строению и функциям, например у взрослого  человека около 230 различных типов клеток. Все они являются потомками одной клетки — зиготы (в случае полового размножения) — и приобретают различия в результате процесса дифференцировки. Дифференцировка в подавляющем большинстве случаев не сопровождается изменением наследственной информации клетки, а обеспечивается лишь путем регуляции активности генов, специфический характер экспрессии генов наследуется во время деления материнской клетки обычно благодаря эпигенетическим механизмам. Однако есть исключения: например, при образовании клеток специфической иммунной системы позвоночных происходит перестройка некоторых генов, эритроциты млекопитающих полностью теряют всю наследственную информацию, а половые клетки — ее половину.

Различия между клетками на первых этапах эмбрионального развития появляются, во-первых, вследствие неоднородности цитоплазмы оплодотворенной яйцеклетки, из-за чего во время процесса дробления  образуются клетки, различающиеся по содержанию определенных белков и РНК; во-вторых, важную роль играет микроокружение клетки — ее контакты с другими клетками и средой.

Подвергаясь дифференцировке, клетки теряют свои потенции, то есть способность  давать начало клеткам других типов. Из тотипотентных клеток, к которым относится, в частности зигота, может образоваться целостный организм. Плюрипотентные клетки (например, клетки бластоцисты) имеют возможность дифференцироваться в любой тип клеток организма, но из них не могут развиться внезародышевые ткани, а значит и новая особь. Клетки, которые способны дать начало только ограниченному количеству других тканей, называются мультипотентными (стволовые клетки взрослого человека), а те, которые могут воспроизводить только себе подобных — унипотентными. Многие из окончательно дифференцированных клеток (например нейроны, эритроциты) полностью теряют способность к делению и выходят из клеточного цикла.

В некоторых случаях дифференцировка  может быть обратной, противоположный  ей процесс называется дедифференцировкой. Он характерен для процессов регенерации. С некоторыми оговорками к явлению дедифференцировки можно отнести опухолевую трансформацию клеток

11 Клеточная смерть

Одноклеточные организмы  в некотором смысле можно считать  «бессмертными», поскольку, за исключением  случаев повреждения или голодания, они не умирают, а проходят этап деления, в результате которого образуется два  новых организма. Зато все клетки многоклеточных организмов (кроме гамет) обречены на гибель, но умирают они  не только в случае смерти всей особи  — этот процесс происходит постоянно.

Смерть некоторых клеток необходима во время эмбрионального развития, клетки продолжают умирать  и у взрослых организмов, например, в костном мозге и кишечнике  человека ежечасно гибнут миллиарды  клеток. Из-за физиологических условий  происходит «запрограммированная клеточная  смерть», другими словами клетки «совершают суицид». Наиболее распространенным, однако не единственным, путем клеточного самоуничтожения является апоптоз. Основными признаками апоптоза является фрагментация ДНК, распад клетки на апоптические тельца — везикулы, окруженные мембранами. На их поверхности расположены особые молекулы, которые побуждают соседние клетки и макрофаги фагоцитовать их таким образом, что процесс не сопровождается воспалением. Апоптоз является энергозависимым процессом и требует использования АТФ. Этот путь клеточной смерти важен не только для развития организма, нормального функционирования иммунной системы, но также и для защиты лица от поврежденных клеток, которые могут стать на путь злокачественной трансформации, и от вирусных инфекций.

Физическое или химическое повреждение клеток, а также недостаток источников энергии и кислорода, может привести к другой смерти —  некротической. Некроз, в отличие  от апоптоза, — пассивный процесс, он часто сопровождается разрывом плазмалеммы и утечкой цитоплазмы. Некроз почти всегда вызывает воспаление окружающих тканей. В последнее время исследуется механизм запрограммированного некроза как возможной противовирусной и противоопухолевой защиты.

При условии длительного  недостатка АТФ в клетке она не сразу погибает путем некроза, а  во многих случаях становится на путь аутофагии — процесса, который позволяет ей еще некоторое время оставаться жизнеспособной. При аутофагагии (буквально «самопоедание») обмен веществ переключается в сторону активного катаболизма, при этом отдельные органеллы окружаются двойными мембранами, образуются так называемые аутофагосомы, сливающиеся с лизосомами, где происходит переваривание органических веществ. Если голодовка продолжается и после того, как большинство органелл уже «съедено», клетка погибает путем некроза. Некоторые авторы считают, что при определенных условиях автофагия может быть отдельным типом клеточной смерти.

12 Эволюция клеток

Доподлинно неизвестно, когда  на Земле появилась первая клетка и каким путем она возникла. Наиболее ранние вероятные ископаемые остатки клеток, приблизительный возраст которых оценен в 3,49 млрд лет, найдены на востоке Пилбары (Австралия), хотя биогенность их происхождения было поставлено под сомнение. О существовании жизни в раннем архее свидетельствуют также строматолиты того же периода.

Возникновению первых клеток должно было предшествовать накопление органических веществ в среде и появление определенной формы пребиотического метаболизма. Протоклетки содержали как минимум два обязательных элемента: наследственную информацию в виде молекул, способных к саморепликации, и определенного рода оболочки, которая ограждала внутреннее содержимое первых клеток от окружающей среды. Наиболее вероятным кандидатом на роль саморепликативных молекул является РНК, поскольку она может одновременно выступать и носителем наследственной информации, и катализатором; кроме того, РНК, в отличие от ДНК, самодостаточна для осуществления биосинтеза белков.

Неизвестно также, из каких  веществ были построены мембраны первых клеток, однако, вполне вероятно, это могли были простые амфифильные соединения, такие как соли жирных кислот, способные самоорганизовываться в липосомы, которые могут проходить циклы роста и деления. Жирные кислоты были синтезированы во многих экспериментах по воспроизведению пребиотических условий, также они были найдены в метеоритах. Считается, что первые живые клетки были гетеротрофными.

12.1 Возникновение  эукариотических клеток

Данные секвенирования рРНК позволили построить универсальное дерево жизни, в котором последний универсальный общий предок дал начало двум ветвям эволюции: эубактериям и кладе neomura, последняя из которых в свою очередь разделилась на две ветви: археи и эукариоты. В эволюции эукариот, вероятно, большую роль сыграл эндосимбиоз — считается, что именно таким методом клетки ядерных получили митохондрии, а позже — и хлоропласты.

Эукариоты имеют много  общих генов как с эубактериями, так с археями; некоторые ученые считают, что они возникли в результате слияния геномов этих двух групп организмов, что могло произойти в результате эндосимбиоза. Из-за этого, вместо «дерева жизни», предлагается использовать «круг жизни». Другие же исследователи, отмечая важность интенсивного горизонтального переноса между предками эукариот, бактерий и археобактерий, предлагают отображать филогенетические связи между ними с помощью «сетки жизни».

13 Химический состав  клетки

1 группа (до 98 %) (органогены)

  • Углерод
  • Водород
  • Кислород
  • Азот
  • Фосфор

2 группа (1,5—2 %) (макроэлементы)

  • Калий
  • Натрий
  • Кальций
  • Магний
  • Хлор
  • Железо

3 группа (>0,01 %) (микроэлементы)

  • Цинк
  • Марганец
  • Медь
  • Фтор
  • Йод
  • Кобальт
  • Молибден

4 группа (>0,00001 %) (ультрамикроэлементы)

  • Уран
  • Радий
  • Золото

 

 

Список литературы

 

  1. Биологический энциклопедический словарь / Гл. редактор Гиляров М. С.. — М.: «Советская энциклопедия», 1986. — 831 с. — 100 000 экз.
  2. Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки: В 3-х т. — 2-ое, переработанное. — М.: «Мир», 1993. — Т. 2. — 539 с. — ISBN 5-03-001987-1
  3. Булдаков Л. А., Калистратова В. С. Радиоактивное излучение и здоровье. — М.: Информ-Атом, 2003. — 165 с.
  4. Гилберт С. Биология развития: в 3-х томах. — М.: «Мир», 1995. — Т. 3. — 352 с. — 5000 экз. — ISBN 5-03-001833-6

Информация о работе История открытия и изучения клеточного строения организма