История развития генетики

Автор работы: Пользователь скрыл имя, 26 Апреля 2015 в 00:31, реферат

Описание работы

Генетика - наука о наследственности и её изменчивости - получила развитие в начале XX в. , после того как исследователи обратили внимание на законы Г. Менделя , открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлении. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г.

Файлы: 1 файл

история развития генетики .docx

— 31.50 Кб (Скачать файл)

    Генетика - наука о наследственности и её изменчивости - получила развитие в начале XX в. , после того как исследователи обратили внимание на законы Г. Менделя , открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлении. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г. Исследователями классического периода развития генетики были выяснены основные закономерности наследования и доказано, что наследственные факторы (гены) сосредоточены в хромосомах. Дальнейший прогресс в изучении закономерностей хранения и реализации генетической информации сдерживался по двум причинам. Во-первых , из-за слишком объемных экспериментов , связанных с более глубоким изучением генов, во-вторых , ввиду невозможности понять работу генов без углубленного исследования превращения молекул, вовлеченных в генетические процессы. Переход к генетическим исследованиям микроорганизмов, позволивший избегать многих трудностей, был вполне закономерен. Такой переход осуществился в 50-х годах. В 1941 г. Дж. Бидл и Э. Тейтум опубликовал короткую статью " Генетический контроль биохимических реакций у Neurospora ", в которой сообщили о первых генетических экспериментах на микроорганизмах.

В последние годы эти исследования получили широкий размах и проводятся на самых различных биологических объектах.

Открытие Г. Менделем законов наследования.

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому ботанику-любителю Иоганну Грегору Менделю. В своих работах, выполнявшихся в период с 1856 по 1863г., он раскрыл основы законов наследственности.

Первое его внимание было обращено на выбор объекта. Для своих исследований Мендель избрал горох. Основанием для такого выбора послужило, во-первых, то, что горох - строгий самоопылитель, и это резко снижало возможность заноса нежелательной пыльцы; во-вторых, в то время имелось достаточное число сортов гороха, различавшихся по нескольким наследуемым признакам.

Мендель получил от различных ферм 34 сорта гороха. После двух годовой проверки, сохраняют ли они свои признаки неизменными при размножении без скрещивания, он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку ( моногибридное скрещивание). Во всех опытах с 7 парами сортов было подтверждено явление доминирования в первом поколении гибридов, обнаруженное Сажрэ и Нодэном. Мендель ввел понятие доминантного и рецессивного признаков , определив доминантными признаки , которые переходят в гибридные растения совершенно неизменными или почти неизменными , а рецессивными те, которые становятся при гибридизации скрытыми . Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков при скрещиваний.

Для дальнейшего анализа природы наследственности , Мендель изучил ещё несколько поколении гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных признаков.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличных от доминантных, но являющимися смешанными по своей природе.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками и определяемыми ими признаками организма. За счет пере комбинации задатков ( впоследствии эти задатки В. Иоганнсен назвал генами. ), при скрещивании образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами. Это положение легло в основу фундаментального закона Менделя - закона чистоты гамет.

Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, определили развитие науки более чем на четверть века.

Цитологические основы генетики

В 70 - 80-х годах XIX в. были описаны митоз и поведение хромосом во время деления клетки, что навело на мысль, что эти структуры ответственны за передачу наследственных потенций от материнской клетки дочерним. Деление материала хромосом на две равные частицы свидетельствовало в пользу гипотезы, что именно в хромосомах сосредоточена генетическая память. Изучение хромосом у животных и растений привело к выводу, что каждый вид животных существ характеризуется строго определенным числом хромосом.

Открытый Э. ван Бенедоном (1883) факт, что число хромосом в клетках тела вдвое больше, чем в половых клетках, можно объяснить : поскольку при оплодотворении ядра половых клеток сливаются и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворения должно противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое.

В 1900 г. независимо друг от друга К. Корренс в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее закономерности и, натолкнувшись на его работу, вновь опубликовали её в 1901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления о наследственных факторах, о наличии одинарного набора факторов в гаметах, и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессе наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом.

Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттом и Бровери положили начало новому направлению генетики - хромосомной теории наследственности.

Изучение генетических основ эволюции.

В 1904 г. К. Пирсон обосновал так называемый закон стабилизирующего скрещивания, согласно которому в условиях свободного скрещивания при любом исходном соотношении численности гомозиготных и гетерозиготных родительских форм в результате первого же скрещивания внутри сообщества устанавливается состояние равновесия. В 1908 г. английский математик Г. Харди пришел к выводу, что в неограниченно больших популяциях при наличии свободного скрещивания, при отсутствии давления мутаций, миграция и отбор относительная численность гомозиготных (как доминантных, так и рецессивных) и гетерозиготных особей будет сохранятся постоянной при условии равенства произведения числа гомозиготных (как доминантных, так и рецессивных) особей квадрату половины числа гетерозиготных форм. Эти закономерности длительное время не были признаны биологами-эволюционистами.

Лишь в 1926 г. С.С Четвериковым была опубликована большая работа, привлекшая внимание к общебиологическому значению выкладок Пирсона и Харди. Четвериков подробно рассмотрел биолого-генетические основы эволюции и заложил основы новой научной дисциплины -популяционной генетики. Дальнейшее развитие популяционной генетики связано с работами С. Райта, Р. Фишера, Н.П.Дубининым и др.

Четвериков и его ученики Н.К. Беляев, С.М. Гершензон .П.Ф. Рокицкий и Д.Д. Ромашов впервые осуществили экспериментально-генетический анализ природных популяций дрозофилы, полностью подтвердивший их насыщенность рецессивными мутациями. Было также установлено, что сохранение и распространение мутаций в популяции определяется генетико-автоматическими процессами. Детальный анализ этих процессов был проведен Ромашовым (1931), Дубининым (1931) и Райтом (1921, 1931). Последний назвал их "явление дрейфа генов в популяции", а Четвериков - "генетико-стохастическими ", подчеркнув их вероятностно-статистическую природу. Статистический анализ, показал, что в результате генетико-автоматических процессов уничтожаются множество возникших мутации и лишь некоторые доводятся до уровня заметных концентраций. В силу вероятностной природы генетико-автоматичеких процессов они могут то устранять отдельные мутации, то поднимать их численность, позволяя отбору осуществлять механизм "проб и ошибок". Генетико-автоматические процессы постоянно выносят редкие мутации до уровня действия отбора и этим помогают последнему быстро "пересмотреть " новые варианты мутантов. Таким образом генетико-автоматичекие процессы ускоряют эволюцию новых мутаций за счет сокращения ранних этапов размножения вновь возникших мутации

Детальное изучение генетических структур природных популяций и скорости распространения мутаций в природе превратилось сейчас в область биологии, активно разрабатываемую на основе математических методов.

Генетический контроль синтеза белков.

Важнейшим достижением молекулярной генетики было выяснение цепи реакций, обеспечивающих передачу информации от ДНК к белку. Цитохимически было доказано, что ДНК локализована главным образом в ядре клеток. Синтез белков, как показали исследования начала 50-х годов. происходит в основном в цитоплазме. Сразу возник вопрос: каким образом ядро может осуществлять контроль за синтезом белка в цитоплазме?

В 30-х годах XX в. было установлено. что в клетках наряду с ДНК содержится второй класс нуклеиновых кислот -рибонуклеиновые кислоты (РНК). В отличие от ДНК в РНК вместо сахара дизоксирибозы содержится также пяти-членный углевод - рибоза, а одно из пиримидиновых оснований - Тимин - заменено на урацил. Кроме того было показано, что РНК , как правило, не двуспиральная, а однонитчата.

В (1942) Браше и Кедровский (1951), а затем в обширных опытах было показано, что интенсивный синтез белка происходит в тех участках, где сосредоточено много РНК . Было предположено, что именно РНК переносит информацию с ДНК на белок, но только в 1961 году было воплощено в четкую гипотезу Ф. Жакобом и Ж. Моно. Они назвали такую РНК - "информационной РНК". . Основное затруднение в понимании механизма передачи генетической информации с ДНК к белку заключалось в том, что прямой синтез белка на РНК был невозможен из-за чисто стериотических не соотношений: молекулы аминокислот не совпадают с размерами кодонов. Ф. Крик в 1954 г. предложил так называемую адаптерную гипотезу, согласно которой функции перевода языка нуклеиновых кислот на язык белков должны выполнять адаптерные РНК . Это предположение подтвердилось. Было выделено более 20 низкомолекулярных РНК, которые сначала были названы растворимыми, а затем переименованы в транспортные РНК (тРНК).

Мутации и генетический код.

Следует упомянуть об установлении двух моментов, связанных с генетическим кодом. Первое - врожденность кода, означающая ,что одна аминокислота может кодироваться несколькими кодонами, т.е. одной и той же аминокислоте нередко соответствует несколько кодонов. Это немаловажное обстоятельство позволяет иметь разным организмам несколько различающиеся "диалекты". Действительно, перекодировка сообщений, записанных языком нуклеотидов в ДНК в язык аминокислотных последовательностей в белках, происходит в рибосомах с участием РНК. Отсутствие тРНК, узнающей некоторые из кодонов одной и той же аминокислоты, приведет к тому, что эти кодоны не будут узнаны и останутся бессмысленными в этой клетке. По-видимому, этот механизм действует при размножении ряда вирусов, активно размножающихся в одних видах организмов и не способных к размножению в других.

Второй интересный момент - универсальность генетического кода.

Анализ природы различных мутаций привел к выводу, что все точечные мутации можно разделить на три основных класса:

1. Миссенс-мутации - мутации, при которых изменяется смысл кодона; в этом случае против него встает неверная аминокислота, и свойства синтезируемого белка меняются.

2. Нонсенс-мутации - мутации , при которых возникает нонсенс-кодон, не кодирующий никаких аминокислот, и на нем обрывается чтение иРНК в рибосомах.

3. Мутации со сдвигом  чтения. Эти мутации , изучаемые Криком, позволили доказать трехбуквенность генетического кода. Мутации сдвига чтения возникают после того, как одно или несколько оснований выпадут из молекулы ДНК или внедрятся в нее. Интересно и то , что сдвиг чтения чаще всего приводит к тому, в какой-то точке он заканчивается нонсенс-кодоном и на нем чтение обрывается вообще.

Выяснение природы, строения и функционирования генетического кода явилось огромным достижением современной биологии. Последние успехи в искусственном синтезе белка, нуклеиновых кислот, особенно тех ,которые обладают способностью к программированию живых вирусных частиц (работы А.Корнберга в США), позволяют надеяться , что одна из основных проблем современной биологии - искусственный синтез живого с нужными человеку свойствами - будет в конце концов разрешена.

Регуляция генной активности.

Функциональная неравнозначность клеток и связанная с ней репрессия и активация генов давно привлекали внимание генетиков.

Первая попытка объяснить регуляторную активность генов были связаны с изучением гистонных белков. Еще супруги Стэдман в начале 40-х годов нашего века получили первые четкие результаты о различиях в химической природе гистонных белков. Дальнейшие исследования показали, что регуляция генной активности гораздо более сложный процесс, нежели простое взаимодействие участков генов с молекулами пистонных белков.

Жакоб и Моно разделили гены регуляторной системы на два типа - гены-регуляторы и гены-операторы. Авторы ввели в генетику новое понятие, определив блок структурных генов и управляющий ими оператор как единую функциональную единицу -оперон.

В последние годы были получены данные о наличии еще одной управляющей ячейки генной активности- промоторе. Оказалось , что по соседству с операторным участком , к которому присоединяется продукт -белковое вещество репрессор, синтезированный на гене-регуляторе, имеется другой участок, который относится к членам регуляторной системе генной активности. К этому участку присоединяется молекула фермента РНК- полимеразы. В этом промоторном участке должно произойти взаимное узнавание уникальной последовательности нуклеотидов в ДНК и специфической конфигурации белка РНК- полимеразы. От эффективности узнавания будет зависеть осуществление процесса считывания генетической информации с данной последовательности генов оперона, примыкающего к промотору.

Информация о работе История развития генетики