Автор работы: Пользователь скрыл имя, 16 Февраля 2012 в 21:08, реферат
Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Простейшие формы жизни - это одиночные клетки, размножающиеся делением. Более высокоразвитые организмы, такие как мы сами, можно сравнить с клеточными городами, в которых специализированные функции осуществляют группы клеток, в свою очередь связанные между собой сложными системами коммуникаций. В известном смысле клетки находятся на полпути между молекулами и человеком. Клетки изучают для того, чтобы понять, каково их молекулярное строение, с одной стороны, и чтобы выяснить, как они взаимодействуют для образования столь сложного организма, как человек - с другой.
Введение..............................................................................................................................3
1. Строение эукариотической клетки...........................................................4
2. Прокариотическая клетка..............................................................................10
Заключение......................................................................................................................12
Список литературы...................................................................................................13
Введение......................
1.
Строение эукариотической
клетки........................
2.
Прокариотическая
клетка........................
Заключение....................
Список
литературы....................
Введение.
Все живые
существа состоят из клеток
- маленьких, окруженных мембраной полостей,
заполненных концентрированным водным
раствором химических веществ. Простейшие
формы жизни - это одиночные клетки, размножающиеся
делением. Более высокоразвитые организмы,
такие как мы сами, можно сравнить с клеточными
городами, в которых специализированные
функции осуществляют группы клеток, в
свою очередь связанные между собой сложными
системами коммуникаций. В известном смысле
клетки находятся на полпути между молекулами
и человеком. Клетки изучают для того,
чтобы понять, каково их молекулярное
строение, с одной стороны, и чтобы выяснить,
как они взаимодействуют для образования
столь сложного организма, как человек
- с другой.
Считается,
что все организмы и все
составляющие их клетки произошли эволюционным
путем от общей преДНКовой клетки.
Два основных процесса
эволюции
- это:
1.
случайные изменения генетической информации,
передаваемой от организма к его потомкам;
2.
отбор генетической информации,
способствующей выживанию и
Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить разнообразие живого мира.
Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными. Не в наших силах вернуться в прошлое и стать свидетелями уникальных молекулярных событий, происходивших миллиарды лет назад. Однако эти древние события оставили много следов, которые мы можем анализировать.
Но, что
еще более важно, каждый современный
организм содержит информацию о признаках
живых организмов в прошлом. В
частности, существующие ныне биологические
молекулы, позволяют судить об эволюционном
пути, демонстрируя фундаментальное
сходство между наиболее далекими живыми
организмами и клетками и выявляя некоторые
различия между ними.
Строение
эукариотической
клетки
Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они похожи в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.
Клетки
всех типов содержат два
Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний — из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка — клеточная стенка. Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.
На поверхности клеток мембрана образует удлиненные выросты — микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. “фаго” — пожираю, “питое” — клетка). При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч. “пино” — пью, “цитос” — клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.
Цитоплазма на 85 % состоит из воды, на 10 % — из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.
В
стенках канальцев
Внутренняя
полость канальцев заполнена продуктами
жизнедеятельности клетки. Внутриклеточные
канальцы, образуя сложную ветвящуюся
систему, регулируют перемещение и концентрацию
веществ, разделяют различные молекулы
органических веществ и этапы их синтеза.
На внутренней и внешней поверхности мембран,
богатых ферментами, осуществляется синтез
белков, жиров и углеводов, которые либо
используются в обмене веществ, либо накапливаются
в цитоплазме в качестве включений, либо
выводятся наружу.
Рибосомы встречаются во всех типах клеток — от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.
Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.
Митохондрии — небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки — кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества — аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.
Лизосомы — мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизосомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.
Пластиды есть только в растительных клетках и встречаются у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.
Хлоропласты — зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла.
Такая слоистая
структура обеспечивает
Хромопласты — пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов - каротиноидов.
Лейкопласты — бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток — масла, белки.
Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоли.
У многих растительных и животных клеток имеются органоиды специального назначения: реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).
Включения — временные элементы, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках —крахмал, капельки жира, белки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках — гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); некоторые включения накапливаются в клетках как отбросы — в виде кристаллов, пигментов и др.