Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 07:23, контрольная работа
21. Что такое ферменты? Какова их химическая природа? Приведите примеры простых и сложных ферментов.
Биохимические пути обезвреживания токсичных продуктов, образующихся в кишечнике при распаде аминокислот. Дезинтоксикационная роль макроэргетических нуклеотидов печени - ФАФС и УДФГК.
Печень, кроме того, обеспечивает сбалансированный пул свободных аминокислот организма путем синтеза заменимых аминокислот и перераспределения азота в результате реакций трансаминирования.
Как видно из схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО2, Н2О и NH3) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови.
Обезвреживание аммиака в организме
В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакций дезаминирования и окисления биогенных аминов освобождается большое количество аммиака, являющегося высокотоксичным соединением. Поэтому концентрация аммиака в организме должна сохраняться на низком уровне. Действительно, уровень аммиака в крови в норме не превышает 60 мкмоль/л (это почти в 100 раз меньше концентрации глюкозы в крови). В опытах на кроликах показано, что концентрация аммиака 3 ммоль/л является летальной. Таким образом, аммиак должен подвергаться связыванию в тканях с образованием нетоксичных соединений, легко выделяющихся с мочой.
Один из путей связывания и обезвреживания аммиака в организме, в частности в мозге, сетчатке, почках, печени и мышцах – это биосинтез глутамина (возможно аспарагина). Глутамин и аспарагин выделяются с мочой в небольшом количестве. Было высказано предположение, что они выполняют скорее транспортную функцию переноса аммиака в нетоксичной форме. Ниже приводится химическая реакция синтеза глутамина, катализируемого глутаминсинтетазой.
Механизм этой синтетазной реакции, подробно изученный А. Майстером, включает ряд стадий. Синтез глутамина в присутствии глутаминсинтетазы может быть представлен в следующем виде:
Биосинтез аспарагина протекает несколько отлично и зависит от природы ферментов и донора аммиака. Так, у микроорганизмов и в животных тканях открыта специфическая аммиакзависимая аспарагинсинтетаза, которая катализирует синтез аспарагина в две стадии:
В животных тканях содержится, кроме того, глутаминзависимая аспарагинсинтетаза, которая для синтеза во второй стадии использует амидную группу глутамина:
б) Е-аспартил~АМФ + Глн -> Асн + Е + АМФ + Глу.
Суммарная ферментативная реакция синтеза аспарагина может быть представлена в следующем виде:
Асп + АТФ + NН3 (или Глн) –> Асн + АМФ + РРi + (Глу).
Видно, что энергетически синтез аспарагина обходится организму дороже, поскольку образовавшийся РРi далее распадается на ортофосфат.
Часть аммиака легко связывается с α-кетоглутаровой кислотой благодаря обратимости глутаматдегидрогеназной реакции. Если учесть связывание одной молекулы аммиака при синтезе глутамина, то нетрудно видеть, что в организме имеется хорошо функционирующая система, связывающая две молекулы аммиака
Глутамин, кроме того, используется почками в качестве резервного источника аммиака (образуется из глутамина под действием глутаминазы), необходимого для нейтрализации кислых продуктов обмена при ацидозе и защищающего тем самым организм от потери с мочой используемых для этих целей ионов Na+.
Чужеродные вещества (ксенобиотики) в печени нередко превращаются в менее токсичные и даже индифферентные вещества. Повидимому, только в этом смысле можно говорить об «обезвреживании» их в печени. Происходит это путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. Необходимо отметить, что в печени окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты. Наряду с микро-сомальным в печени существует также пероксисомальное окисление. Пероксисомы - микротельца, обнаруженные в гепатоцитах; их можно рассматривать как специализированные окислительные органеллы. Эти микротельца содержат оксидазу мочевой кислоты, лактатоксидазу, оксидазу D-аминокислот, а также каталазу. Последняя катализирует расщепление перекиси водорода, которая образуется при действии указанных оксидаз; отсюда и название этих микротелец - пероксисомы. Пероксисомальное окисление, так же как и микросомальное, не сопровождается образованием макроэргических связей.
В печени широко представлены также «защитные» синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак. В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофона - скатол и индол. Эти вещества всасываются, и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой.
Обезвреживание фенола, крезола, скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами, а с их так называемыми активными формами: ФАФС и УДФГК.
Глюкуроновая кислота участвует не только в обезвреживании продуктов гниения белковых веществ, образовавшихся в кишечнике, но и в связывании ряда других токсичных соединений, образующихся в процессе обмена в тканях. В частности, свободный, или непрямой, билирубин, обладающий значительной токсичностью, в печени взаимодействует с глюкуроновой кислотой, образуя моно- и диглюкурониды билирубина. Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени из бензойной кислоты и глицина.
Синтез гиппуровой кислоты у человека протекает преимущественно в печени. Поэтому в клинической практике довольно часто для выяснения антитоксической функции печени применяют пробу Квика-Пытеля (при нормальной функциональной способности почек): после нагрузки бензоатом натрия в моче определяют количество образовавшейся гиппуровой кислоты. При паренхиматозных поражениях печени синтез гиппуровой кислоты снижен.
В печени широко представлены процессы метилирования. Так, перед выделением с мочой амид никотиновой кислоты (витамин РР) метилируется в печени; в результате образуется N-метилникотинамид. Наряду с метилированием интенсивно протекают и процессы ацетилирования. В частности, в печени ацетилированию подвергаются различные сульфаниламидные препараты.
Примером обезвреживания токсичных продуктов в печени путем восстановления является превращение нитробензола в парааминофенол. Многие ароматические углеводы обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.
Печень принимает активное участие в инактивации различных гормонов. С током крови гормоны попадают в печень, при этом активность их в большинстве случаев резко снижается или полностью утрачивается. Так, стероидные гормоны, подвергаясь микросомальному окислению, инакти-вируются, превращаясь затем в соответствующие глюкурониды и сульфаты. Под влиянием аминооксидаз в печени происходит окисление катехоламинов и т.д.
Индол и сканол, прежде чем вступить во взаимодействие с ФАФС или УДФГК, окисляются в соединения, содержащие гидроксильную группу (индоксил и скатоксил). Поэтому парными соединениями будут скатоксилсерная кислота или соответственно скатоксилглюкуроноваякислота. В печени содержание кофермента ацетилирования (HS-KoA) в 20 раз превышает его концентрацию в мышечной ткани.
50. Какова роль адреналина и инсулина в углеводном обмене? Напишите уравнение реакции образования мальтозы из двух молекул α-глюкозы.
Углеводный обмен - совокупность процессов превращения моносахаридов и их производных, а также гомополисахаридов, гетерополисахаридов и различных углеводсодержащих биополимеров (гликоконъюгатов) в организме человека и животных. В результате углеводный обмен происходит снабжение организма энергией, осуществляются процессы передачи биологической информации и межмолекулярные взаимодействия, обеспечиваются резервные, структурные, защитные и другие функции углеводов. Углеводные компоненты многих веществ, например гормонов, ферментов, транспортных гликопротеинов, являются маркерами этих веществ, благодаря которым их «узнают» специфические рецепторы плазматических и внутриклеточных мембран.
Один из наиболее важных углеводов - Глюкоза - является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. Глюкоза образуется из гликогена и углеводов пищи - сахарозы, лактозы, крахмала, декстринов. Кроме того, глюкоза синтезируется в организме из различных неуглеводных предшественников. Этот процесс носит название глюконеогенеза и играет важную роль в поддержании Гомеостаза. В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках.
Существуют два пути расщепления глюкозы в организме: Гликолиз и пентозофосфатный путь. Схематически пентозофосфатный путь выглядит так: глюкозо-6-фосфат → 6-фосфатглюконолактон → рибулозо-5-фосфат → рибозо-5-фосфат. В ходе пентозофосфатного пути происходит последовательное отщепление от углеродной цепи сахара по одному атому углерода в виде СО2. В то время как гликолиз играет важную роль не только в энергетическом обмене, но и в образовании промежуточных продуктов синтеза липидов, пентозофосфатный путь приводит к образованию рибозы и дезоксирибозы, необходимых для синтеза нуклеиновых кислот.
В синтезе гликогена - главного резервного полисахарида
человека и высших животных - участвуют
два фермента: гликогенсинтетаза (уридиндифосфат
(УДФ) глюкоза: гликоген-4α-
Распад гликогена осуществляется фосфоролитическим (гликогенолиз) или гидролитическим путями. Гликогенолиз представляет собой каскадный процесс, в котором участвует ряд ферментов фосфорилазной системы - протеинкиназа, киназа фосфорилазы b, фосфорилаза b, фосфорилаза а, амило-1,6-глюкозидаза, глюкозо-6-фосфатаза. В печени в результате гликогенолиза образуется глюкоза из глюкозо-6-фосфата благодаря действию на него глюкозо-6-фосфатазы, отсутствующей в мышцах, где превращения глюкозо-6-фосфата приводят к образованию молочной кислоты (лактата). Гидролитический (амилолитический) распад гликогена обусловлен действием ряда ферментов, называемых амилазами (Амилазы) (α-глюкозидазами). Известны α-, β- и γ-амилазы. α-Глюкозидазы в зависимости от локализации в клетке делят на кислые (лизосомные) и нейтральные.
Синтез сложных
сахаров и их производных происходит
с помощью специфических
В организме человека и животных много ферментов, ответственных за превращение одних углеводов в другие, как в процессах гликолиза и глюконеогенеза, так и в отдельных звеньях пентозофосфатного пути.
Ферментативное расщепление углеводсодержащих соединений происходит в основном гидролитическим путем с помощью гликозидаз, отщепляющих углеводные остатки (экзогликозидазы) или олигосахаридные фрагменты (эндогликозидазы) от соответствующих гликоконъюгатов. Гликозидазы являются чрезвычайно специфическими ферментами. В зависимости от природы моносахарида, конфигурации его молекулы (их D или L-изомеров) и типа гидролизуемой связи (α или β) различают α-D-маннозидазы, α-L-фукозидазы, ․β-D-галактозидазы и т.д. Гликозидазы локализованы в различных клеточных органеллах; многие из них локализованы в лизосомах. Лизосомные (кислые) гликозидазы отличаются от нейтральных не только локализацией в клетках, оптимальным для их действия значением рН и молекулярной массой, но и электрофоретической подвижностью и рядом других физико-химических свойств.
Гликозидазы играют важную роль в различных биологических процессах; они могут, например, оказывать влияние на специфический рост трансформированных клеток, на взаимодействие клеток с вирусами и др.
Имеются данные
о возможности