Методы исследования эволюции

Автор работы: Пользователь скрыл имя, 29 Августа 2014 в 23:41, реферат

Описание работы

Экология, изучая условия существования и взаимоотношения между живыми организмами, играет важную роль в познании процессов эволюции.
Весь эволюционный процесс является адаптациогенезом – процессом возникновения и развития адаптаций; экология вскрывает значение этих адаптаций. Например, экологи показали, что при колонизации островов виды с высокой скоростью размножения (r-стратегия, см. гл. 10) имеют больше преимуществ. На поздних стадиях колонизации по мере «насыщения» фауны и флоры преимущества получают виды с меньшими потенциями размножения, но обладающие высокой конкурентной способностью (K-стратегия).

Файлы: 1 файл

реферат.docx

— 32.34 Кб (Скачать файл)

 

 

Реферат

на тему:

«Методы исследования эволюции»

 

 

 

 

 

 

 

 

 

                                                        

 

 

 

Методы исследования эволюции

 

1.Экологические  методы.

Экология, изучая условия существования и взаимоотношения между живыми организмами, играет важную роль в познании процессов эволюции.

Весь эволюционный процесс является адаптациогенезом – процессом возникновения и развития адаптаций; экология вскрывает значение этих адаптаций. Например, экологи показали, что при колонизации островов виды с высокой скоростью размножения (r-стратегия, см. гл. 10) имеют больше преимуществ. На поздних стадиях колонизации по мере «насыщения» фауны и флоры преимущества получают виды с меньшими потенциями размножения, но обладающие высокой конкурентной способностью (K-стратегия).

Эволюционные изменения хорошо прослеживаются и на примере взаимоприспособленности видов друг к другу, что играет важную роль в создании динамического равновесия и устойчивости экосистемы. В Центральной Америке и Мексике при отсутствии муравьев (Pseudomyrmex ferruginea), обычно поселяющихся колониями во вздутых шипах акации (Acacia cornigera), это дерево погибает из-за объедания ее листвы другими насекомыми. Бабочка-монарх (Danaus plexippus) делается несъедобной для хищников из-за накопления в теле при поедании листвы ядовитых растений высокотоксичных гликозидов. Примеров такого рода множество.

Для обоснования теории естественного отбора чрезвычайно важными оказались опыты экологов на модельных популяциях по изучению роли окраски, поведения и формы тела у некоторых насекомых.

Данные экологии позволяют уточнить и углубить доказательства эволюции из других областей биологии посредством выяснения роли конкретных адаптаций.

2.Генетические методы.

 Генетические методы изучения эволюции разнообразны. Это и прямое определение генетической совместимости сравниваемых форм (например, посредством гибридизации), и анализ цитогенетических особенностей организмов. Изучением повторных инверсий в определенных хромосомах у разных популяций одного и того же или близких видов можно с большой точностью восстановить последовательность возникновения таких инверсий, т.е. восстановить микрофилогенез таких групп. Анализ числа и особенностей строения хромосом в группах близких видов часто позволяет выявлять направления возможной эволюции генома таких форм, т.е. выяснять их эволюционные взаимоотношения. Разработка современного эволюционного учения немыслима вне генетических подходов и методов. Развитие популяционной морфологии, фено- и геногеографии, микросистематики, кариосистематики и других «промежуточных» дисциплин (определяющих в известной мере современный этап развития эволюционного учения) наглядно иллюстрирует эту ведущую роль генетики.

Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. То и другое тесно связано: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений.

От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация о всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой:

Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована.

Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению.

В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.

В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений.

Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения стоящих перед генетикой прикладных задач. Достижения генетики используются для выбора типов скрещиваний, наилучшим образом влияющих на генотипическую структуру (расщепление) у потомков, для выбора наиболее эффективных способов отбора, для регуляции развития наследственных признаков, управления мутационным процессом, направленного изменения генома организма с помощью генетической инженерии и сайт-специфичного мутагенеза. Знание того, как разные способы отбора влияют на генотипическую структуру исходной популяции (породу, сорт), позволяет использовать те приемы отбора, которые наиболее быстро изменят эту структуру в желаемую сторону. Понимание путей реализации генетической информации в ходе онтогенеза и влияния, оказываемого на эти процессы окружающей средой, помогают подбирать условия, способствующие наиболее полному проявлению у данного организма ценных признаков и "подавлению" нежелательных. Это имеет важное значение для повышения продуктивности домашних животных, культурных растений и промышленных микроорганизмов, а также для медицины, так как позволяет предупреждать проявление ряда наследственных болезней человека.

Исследование физических и химических мутагенов и механизма их действия делает возможным искусственно получать множество наследственно измененных форм, что способствует созданию улучшенных штаммов полезных микроорганизмов и сортов культурных растений. Познание закономерностей мутационного процесса необходимо для разработки мер по защите генома человека и животных от повреждений физическими (гл. обр. радиацией) и химическими мутагенами. Успех любых генетических исследований определяется не только знанием общих законов наследственности и изменчивости, но и знанием частной генетики организмов, с которыми ведется работа. Хотя основные законы генетики универсальны, они имеют у разных организмов и особенности, обусловленные различиями, например, в биологии размножения и строении генетического аппарата. Кроме того, для практических целей необходимо знать, какие гены участвуют в определении признаков данного организма. Поэтому изучение генетики конкретных признаков организма представляет собой обязательный элемент прикладных исследований.

3.Методы молекулярной биологии.

Уже Ч. Дарвин сделал успешные попытки использовать биохимические показатели для установления систематической принадлежности тех или иных форм. Однако, только начиная с середины XX в. биохимические и молекулярно-биологические методы вышли, пожалуй, на передовые рубежи в изучении эволюционного процесса. По аналогии с изучением эволюции органов и онтогенеза в XIX – начале XX в. возникло целое направление изучения «молекулярной эволюции» (М. Кимура, В.А. Ратнер и др.). Здесь мы рассмотрим лишь некоторые из методов молекулярной биологии, широко применяющихся ныне для изучения эволюционного процесса.

Выяснение строения нуклеиновых кислот и белков. На молекулярном уровне процесс эволюции связан с изменением состава нуклеотидов (в ДНК и РНК) и аминокислот (в белках). На современном этапе развития молекулярной биологии можно анализировать число различий в последовательностях элементов нуклеиновой кислоты или белка разных видов, судить по этому показателю о степени их отличий. Поскольку каждая замена аминокислоты в белке может быть связана с изменением одного, двух или трех нуклеотидов в молекуле ДНК, компьютерными методами можно вычислить максимальное и минимальное число нуклеотидных замен, необходимых для замещения аминокислот в белке. Получаемая таким образом информация поддается дальнейшей количественной оценке: при сравнении ряда организмов можно установить и степень различий (меру эволюционной дивергенции) макромолекул. Другое важное преимущество изучения эволюции методами молекулярной биологии – возможность сравнения сколь угодно далеких организмов – растений и животных, грибов и микроорганизмов. На рис. 6.29 показан результат изучения филогенетических отношений 20 разных организмов на основе определения минимального числа возможных нуклеотидных различий между генами, кодирующими синтез белка цитохрома C. Можно видеть, что в общем эти данные хорошо совпадают с выводами классической систематики. Сейчас построены многие сотни филогенетических деревьев макромолекул. При общем принципиальном совпадении с классическими эволюционными схемами эволюции крупных групп, молекулярными методами оказалось возможным вскрыть немало важных особенностей. Так, при анализе РНК, кодируемой не только ядерными генами, но и клеточными органеллами у растений, выяснилось, например (К. Вууз), что ядерная фракция p-РНК кукурузы (Zea mays) относится к ветви эукариот, а фракции из митохондрий и хлоропластов – к ветви эубактерий. Этот факт является мощным аргументом в пользу симбиотического происхождения эукариот: возникновения митохондрий от пурпурных бактерий, а хлоропластов – от цианобактерий (см. рис. 5.3). При реконструкции древа глобинов (В.А. Ратнер) удалось показать, что средняя скорость эволюции этих белков у животных заметно возрастала 400–500 млн. лет назад (период выхода позвоночных на сушу), когда глобин позвоночных приобрел тетрамерную структуру. Построение филогенетического древа генов, кодирующих синтез гемагглютининов H3 вируса гриппа показало, что скорость эволюции эпидемических вариантов этого вируса (испанка 1918–1919 гг., гонконгский грипп в середине – второй половине XX в. и др.) в несколько раз выше скорости эволюции неэпидемических штаммов. Аналогичные построения для вируса ВИЧ показали, что этот вирус очень близок к одному из вирусов обезьян. Он существовал в Центральной Африке до 1960 г., появился на о. Гаити в середине 70-х гг. и в США к 1978 г. Он распространяется ныне благодаря способности изменяться с невероятной скоростью – увеличивает агрессивность даже в теле одного человека на протяжении 1,5–2 лет.

Молекулярный филогенетический анализ сегодня стал одним из главнейших методов выяснения филогенетических взаимоотношений самых разных групп живых существ и помогает решать немало спорных вопросов макроэволюции.

Другим методом изучения эволюционного процесса на молекулярном уровне является оценка эволюционных изменений по степени сходства первичной структуры нуклеиновых кислот у различных групп организмов посредством гибридизации ДНК. Хотя около 90% ДНК не кодирует белков, тем не менее, изучение ДНК позволяет оценивать филогению генов. Нуклеотидные последовательности позволяют судить об эволюции генов точнее, чем другие методы молекулярной биологии. Расщепленная на отдельные нити ДНК одного организма «гибридизируется» с молекулами ДНК другого вида и в зависимости от того, насколько различаются последовательности нуклеотидов, гибридизация захватывает большие или меньшие участки нитей ДНК. Этим достигается количественная оценка эволюционных изменений, происшедших со сравниваемыми видами. ДНК человека оказывается гомологичной ДНК макаки на 66%, быка – на 28, крысы – на 17, лосося – на 8, бактерии кишечной палочки – на 2%.

Изучение особенностей эволюции на молекулярном уровне привело к идее молекулярных часов, не только отражающих, но и регулирующих эволюционный процесс. Такие расчеты основаны на предположениях о накоплении изменений в информационных макромолекулах с постоянной скоростью. Однако оказалось, что для растений, отличающихся в целом исключительно высокой скоростью эволюции первичной структуры ДНК, концепция молекулярных часов неприемлема: ДНК растений из разных семейств отличается в такой же степени, как ДНК животных разных классов. У растений в ходе эволюции очень быстро могут меняться и повторяющиеся, и уникальные последовательности нуклеотидов в молекулах ДНК. Скорость эволюции макромолекул в разных филогенетических линиях растений оказывается далеко не одинаковой. Так, темпы накопления изменений в нуклеотидных последовательностях у линий, ведущих к цветковым, более чем в 10 раз выше, чем в линии высших нецветковых. При изучении генов актинов было выявлено, что различия между близкими видами у растений превышают таковые разных классов у животных. Поэтому скорость хода молекулярных часов оказывается резко различной в разных группах, а также, по-видимому, в разные геологические эпохи.

 

 

 

 

 

 

 

 

 

Литература

1. www.proznania.ru

2. Биология. Общие закономерности. Захаров В.Б., Мамонтов С.Г., Сивоглазов В.И. - М.: Школа-Пресс, 1996г.;\

3. http://www.krugosvet.ru/

4. http://www.sioc.ru/

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Методы исследования эволюции