Молекулярно-генетические аспекты развития

Автор работы: Пользователь скрыл имя, 06 Апреля 2014 в 10:57, реферат

Описание работы

Существуют два основных типа размножения - бесполое и половое. Бесполое размножение происходит без образования гамет, и в нем участвует лишь один организм. При бесполом размножении обычно образуются идентичные потомки, а единственным источником генетической изменчивости служат случайные мутации.

Файлы: 1 файл

СРС 2.docx

— 71.23 Кб (Скачать файл)

У тлей происходит диплоидный партеногенез, при котором ооциты самки претерпевают особую форму мейоза без расхождения хромосом - все хромосомы переходят в яйцеклетку, а полярные тельца не получают ни одной хромосомы. Яйцеклетки развиваются в материнском организме, так что молодые самки рождаются вполне сформировавшимися, а не вылупляются из яиц. Такой процесс называется живорождением. Он может продолжаться в течение нескольких поколений, особенно летом, до тех пор пока в одной из клеток не произойдет почти полное нерасхождение, в результате чего получается клетка, содержащая все пары аутосом и одну Х-хромосому. Из этой клетки партеногенетически развивается самец. Эти осенние самцы и партеногенетические самки производят в результате мейоза гаплоидные гаметы, участвующие в половом размножении. Оплодотворенные самки откладывают диплоидные яйца, которые перезимо-вывают, а весной из них вылупляются самки, размножающиеся партеногенетически и рождающие живых потомков. Несколько партеногенетических поколений сменяются поколением, возникающим в результате нормального полового размножения, что вносит в популяцию генетическое разнообразие в результате рекомбинации. Главное преимущество, которое дает тлям партеногенез, - это быстрый рост численности популяции, так как при этом все ее половозрелые члены способны к откладке яиц. Это особенно важно в периоды, когда условия среды благоприятны для существования большой популяции, т. е. в летние месяцы.

Партеногенез широко распространен у растений, где он принимает различные формы. Одна из них - апомиксис - представляет собой партеногенез, имитирующий половое размножение. Апомиксис наблюдается у некоторых цветковых растений, у которых диплоидная клетка семязачатка-либо клетка нуцеллуса, либо мегаспора - развивается в функциональный зародыш без участия мужской гаметы. Из остального семязачатка образуется семя, а из завязи развивается плод. В других случаях требуется присутствие пыльцевого зерна, которое стимулирует партеногенез, хотя и не прорастает; пыльцевое зерно индуцирует гормональные изменения, необходимые для развития зародыша, и на практике такие случаи трудно отличить от настоящего полового размножения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Двойное оплодотворение у цветковых растений

 

Гаметогенез. Овогенез. Сперматогенез.

 

Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез)—подразделяется наряд стадий (рис. 1.).

В стадии размножения диплоидные клетки, из которых образуются гаметы, называютсперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.

Так как способом размножения клеток-предшественниц женских и мужских гамет является митоз, то овогоний и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. В ходе митотического цикла их хромосомы имеют либо однонитчатую (после митоза и до завершения синтетического периода интерфазы), либо двунитчатую (постсинтетический период, профаза и метафаза митоза) структуру в зависимости от количества биспиралей ДНК. Если в одинарном, гаплоидном наборе число хромосом обозначить как п, а количество ДНК — как с, то генетическая формула клеток в стадии размножения соответствует 2п2с до S-периода и 2n4c после него.

Рис. 1. Схема гаметогенеза:

1 — сперматогенез, 2 — овогенез, n — количество хромосомных наборов,

с — количество ДНК, РТ — редукционные тельца

На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые. Одна часть накапливаемых веществ представляет собой питательный материал (желток в овоцитах), другая — связана с последующими делениями. Важным событием этого периода является репликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2n4с.

Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное, которые вместе составляют мейоз (см. разд. 5.3.2). После первого деления образуются сперматоциты и овоциты II порядка (формула n2с), а после второго — сперматиды и зрелая яйцеклетка (пс).

В результате делений на стадии созревания каждый сперматоцит I порядка дает четыресперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку иредукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.

Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра, образуя акросомный аппарат, играющий большую роль в оплодотворении. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.

 

Генетика пола человека.

Сцепленное с полом наследование.

 
Наследование, сцепленное с полом. В том случае, когда гены, ответственные за формирование признака, расположены в аутосомах, наследование осуществляется независимо от того, какой из родителей (мать или отец) является носителем изучаемого признака. Однако ситуация резко изменяется, когда признаки определяются генами, лежащими в половых хромосомах. Рассмотрим ещё пример: наследование черепаховой окраски у кошек. Черепаховая окраска, т.е. чередование чёрных и жёлтых пятен, встречается только у кошек. Котов с черепаховой окраской не бывает. Этот факт не могли объяснить, пока не стало известно, что наследование данного признака сцеплено с полом. Чёрная окраска кошек определяется геном В, рыжая – геном b. Эти гены расположены в Х – хромосоме. В Y – хромосоме они отсутствуют. 
Наследование, ограниченное полом. Признаки, выражение или проявление которых различно у представителей разных полов, или проявляющиеся только у одного пола, относятся к ограниченным полом. Они могут определяться генами, расположенными как в аутосомах, так и в половых хромосомах. Примером может служить наследование комолости (отсутствие рогов) у овец. У дорсетской породы овец оба пола рогаты. У суффольской породы, напротив, оба пора комолы. При скрещивании овец разных пород в F1 получают рогатых баранов и комолых ярок (самок). Известно, что многие признаки проявляются у представителей только одного пола (например, способность давать молоко). Однако гены, определяющие этот признак, есть не только у коров, но и у быков. Установить, какова потенциальная способность быка давать высокомолочное потомство, вполне возможно, хотя и косвенным путём. Для этого необходимо получить сведения о молочности его дочерей. Более того, один из самых эффективных способов быстрого повышения удоев состоит в интенсивном отборе быков по их потенциальной молочности.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список  литературы.

  1. http://bannikov.narod.ru/pol.html
  2. http://botan0.ru/?cat=2&id=74

 

 

 

 

 

 

 

 

 


Информация о работе Молекулярно-генетические аспекты развития