Автор работы: Пользователь скрыл имя, 07 Января 2011 в 15:30, реферат
1.1. Строение и классификация
1.2. Химические свойства
1. Моносахариды
1.1. Строение и классификация
Моносахариды – это полигидроксикарбонильные соединения, в которых каждый атом углерода (кроме карбонильного) связан с группой ОН. Общая формула моносахаридов – Сn(H2O)n, где n =3-9.
По химическому строению различают:
В зависимости от длины углеродной цепи моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д. Обычно моносахариды классифицируют с учетом сразу двух этих признаков, например:
В природе встречаются
производные моносахаридов, содержащие
аминогруппу (аминосахара), карбоксильную
группу (сиаловые кислоты,
аскорбиновая кислота), а также атом
Н вместо одной или нескольких групп ОН
(дезоксисахара).
Стереоизомерия
Все моносахариды (кроме дигидроксиацетона) содержат хиральные атомы углерода и имеют стереоизомеры. Простейшая альдоза, глицериновый альдегид, содержит один хиральный атом С и существует в виде двух оптических изомеров – D и L:
По мере увеличения длины цепи количество стереоизомеров у альдогексоз растет. В соответствии с числом хиральных центров существует 4 стереоизомерных альдотетрозы, 8 альдопентоз, 16 альдогексоз и т.д. В зависимости от конфигурации наиболее удаленного от карбонильной группы хирального атома С все моносахариды делят на два стереохимических ряда – D-моносахариды и L-моносахариды:
Подавляющее большинство
природных моносахаридов
Родоначальником ряда D-альдоз является D-глицериновый альдегид. Остальные D-альдозы могут быть построены на основе D-глицеральдегида путем последовательной вставки фрагмента СНОН сразу после карбонильной группы. Стереоизомерные альдозы имеют тривиальные названия.
Уточним стереоизомерные отношения в ряду D-альдоз. Между собой D-альдозы с одинаковым числом атомов углерода (D-альдотетрозы, D-альдопентозы, D-альдогексозы и т.д.) являются диастереомерами. Среди них выделяют особый тип диастереомеров, который называют эпимерами.
Эпимеры – это диастереомеры, которые отличаются по конфигурации только одного хирального центра.
Например, D-рибоза и D-арабиноза являются эпимерами, так как отличаются конфигурацией только хирального атома углерода в положении 2. D-глюкоза имеет несколько эпимеров: D- маннозу по С-2, D-аллозу по С-3, D-галактозу по С-4, L-иодозу по С-5.
Каждая из D-альдоз имеет энантиомер, относящийся к L-ряду, который может быть построен аналогично D-ряду на основе L-глицеральдегида. Энантиомером D-глюкозы является L-глюкоза, D-маннозы – L-манноза и т.д.
Ряд D-кетоз может быть построен на основе простейшей кетозы – дигидроксиацетона. Названия кетоз образуются из названий соответствующих альдоз путем введения суффикса “ул”. Для некоторых кетоз утвердились тривиальные названия.
Дигидроксиацетон не содержит хирального атома С и не имеет стереоизомеров. Остальные кетозы являются хиральными соединениями.
В природе широко распространены гексозы (D-глюкоза, D-галактоза, D-манноза, D-фруктоза) и пентозы (D-рибоза, D-ксилоза, D-арабиноза). Среди производных моносахаридов наиболее распространенными являются аминосахара D-глюкозамин и D-галактозамин и дезоксисахар 2-дезокси-D-рибоза.
Цикло-оксо-таутомерия
Известно, что альдегиды способны присоединять спирты с образованием полуацеталей:
Карбонильная и
гидроксильная группы моносахаридов
взаимодействуют
При этом возникает новый хиральный центр – бывший карбонильный, а теперь аномерный атом углерода. Наиболее устойчивы циклические полуацетали, содержащие шестичленный (пиранозный) или пятичленный (фуранозный) циклы. Они образуются при взаимодействии альдегидной группы с гидроксильной группой в положении 5 или 4 моносахарида соответственно. На рисунке представлена схема образования циклических форм D-глюкозы:
Возникновение нового хирального центра приводит к появлению 2-х стереоизомеров для каждой из циклической форм - a- и b-аномеров.
Аномеры – это эпимеры, которые различаются по конфигурации аномерного атома углерода.
У a-аномера конфигурация аномерного центра совпадает с конфигурацией концевого хирального атома С, у b-аномера она противоположна.
Циклические формы моносахаридов изображают с помощью формул Хеуорса. Молекулу представляют в виде плоского цикла, перпендикулярного плоскости рисунка. Заместители, находившиеся в формуле Фишера слева, располагают над плоскостью цикла, справа – под плоскостью. Для определения положения группы СН2ОН в формуле Фишера предварительно делают две перестановки.
В кристаллическом
состоянии моносахариды находятся
в одной из циклических форм. При
растворении образуется равновесная
смесь линейной и циклических форм. Их
относительное содержание определяется
термодинамической стабильностью. Циклические,
особенно пиранозные формы, энергетически
более выгодны для большинства моносахаридов.
Например, в растворе D-глюкозы преобладает b-D-
Существование равновесия
между линейной и циклическими формами
моносахаридов получило название цикло-оксо-таутомерии
Растворение кристаллического моносахарида сопровождается постепенным таутомерным превращением, которое заканчивается установлением таутомерного равновесия. Каждая таутомерная форма оптически активна и имеет свою величину удельного вращения. Поэтому за таутомерным превращением можно следить по изменению удельного вращения раствора, которое заканчивается с установлением равновесия. Явление изменения удельного вращения свежеприготовленного раствора моносахарида называют мутаротацией. Явление мутаротации – одно из доказательств существования цикло-оксо-таутомерии у моносахаридов.
Конформационное строение
Формулы Фишера и
Хеуорса являются условным изображением
пространственного строения моносахаридов.
Близкое к действительному
Шестичленный цикл, в котором атомы находятся в состоянии sp3-гибридизации, не может иметь плоскую конформацию, так как это означало бы слишком сильное искажение валентных углов (1200 вместо 1090) и заслоненное положение заместителей. Наиболее выгодной конформацией для большинства шестичленных циклов является конформация “кресла”, в которой все валентные углы равны 1090 и нет заслоненных положений заместителей. Так, у циклогексана есть две энергетически равноценные конформации “кресла”, которые находятся в равновесии. Взаимопревращения между ними называютинверсией цикла.
Заместители у каждого атома цикла могут находиться в аксиальном (а) или экваториальном (е) положениях. Аксиальные связи расположены параллельно оси симметрии цикла и направлены попеременно вверх и вниз. Экваториальные связи ориентированы под углом 1090 к оси симметрии цикла также попеременно вверх и вниз. При инверсии цикла экваториальные связи становятся аксиальными и наоборот.
При введении в циклогексан заместителей две конформации кресла становятся энергетически неравноценными. Меньшей энергией, как правило, обладает та конформация, в которой объемистые заместители занимают экваториальное положение. Например, для циклогексанола наиболее выгодной является конформация с экваториальным положением ОН группы:
Основой строения пиранозных
форм моносахаридов является тетраги
1С4 | 4С1 |
Более стабильной является конформация с наименьшим числом объемистых заместителей в аксиальном положении. Для большинства D-альдогексоз это конформация 4С1, в которой группа CH2OH занимает экваториальное положение.
Рассмотрим конформационное строение b-D-глюкопиранозы. Более выгодной для этой формы D-глюкозы является конформация 4С1, в которой все заместители находятся в экваториальном положении.
У a-аномера гликозидный гидроксил
в этой конформации будет занимать аксиальное
положение. Поэтому в равновесной смеси
таутомеров D-глюкозы преобладает b-аномер.
b-D-глюкопираноза
– единственная D-гексоза с экваториальным
положением всех заместителей. Как следствие
этого, D-глюкоза - наиболее распространенный
в природе моносахарид. Из всего семейства
D-альдогексоз в природе встречаются только
эпимеры D-глюкозы – D-галактоза и D-манноза,
у которых число заместителей, занимающих
аксиальное положение минимально.
1.2. Химические свойства
Химические свойства моносахаридов определяются наличием карбонильной группы (в ациклической форме), полуацетального гидроксила (в циклических формах) и спиртовых ОН групп.
Восстановление
При восстановлении карбонильной группы альдоз образуются многоатомные спирты – глициты.
В лабораторных условиях для восcтановления используют NaBH4. В промышленности применяют каталитическое гидрирование. Таким образом получают заменители сахара: из D-глюкозы - сорбит (D-глюцит), из D-ксилозы – ксилит.
Восстановление альдоз приводит к “уравниванию” функциональных групп на концах цепи. В результате из некоторых альдоз (эритрозы, рибозы, ксилозы, аллозы, галактозы) образуются оптически неактивные мезо-соединения, например:
Разные альдозы при восстановлении могут дать один и тот же спирт.
Такая конфигурационная взаимосвязь между глицитами использовалась для установления стереохимической конфигурации моносахаридов.
При восстановлении
кетоз из карбонильной группы возникает
новый хиральный центр и
Эта реакция доказывает, что D-фруктоза, D-глюкоза и D-манноза имеют одинаковые конфигурации хиральных центров С-2, С-3, и С-4.
Окисление
Вследствие своей полифункциональности альдозы окисляются по-разному при действии различных окислителей. При этом может быть окислена карбонильная группа, оба конца углеродной цепи или расщеплена связь С-С.
Получение гликоновых кислот
При мягком окислении альдоз, например, под действием бромной воды, затрагивается только карбонильная группа и образуются гликоновые кислоты, которые очень легко образуют пяти- и шестичленные лактоны.
Кетозы в этих условиях не окисляются и могут быть таким образом выделены из смесей с альдозами..
Альдозы и кетозы дают реакции, характерные только для соединений, содержащих альдегидную группу: они восстанавливают в щелочной среде катионы металлов Ag+ (Ag(NH3)2OH – реактив Толенса) и Cu2+ (комплекс Cu2+ с тартрат-ионом – реактив Фелинга). При этом гликоновые кислоты образуются в незначительном количестве, так как в щелочной среде протекает деградация углеродного скелета моносахаридов.
Альдоза + Ag(NH3)2+ ---->