Основные проблемы генетики и роль воспроизводства в развитии живого

Автор работы: Пользователь скрыл имя, 02 Декабря 2013 в 13:37, дипломная работа

Описание работы

Генетика, превратившая биологию XX века в точную научную дисциплину, непрерывно поражает воображение «широких слоев» научной и околонаучной общественности новыми направлениями и все новыми и новыми открытиями и достижениями. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Данные методы и их проблемы будут описаны в данной работе.

Содержание работы

Введение………………………………………………………………………3
Глава 1.Предмет генетики……………………………………………....4
1.1 Что изучает генетика……………………………………………....4
1.2. Современные представления о гене…………………………….5
1.2. Строение гена……………………………………………………...6
1.4. Проблемы и методы исследования генетики…………………9
1.5. Основные этапы развития генетики…………………………..11
1.6 Генетика и человек……………………………………………….18
Глава 2.Роль воспроизводства в развитии живого……………. 23
2.1. Особенности циклического воспроизводства……………23
Заключение………………………………………………………...27
Библиографический список используемой литературы…………….…29

Файлы: 1 файл

генетика.doc

— 135.50 Кб (Скачать файл)

Цитогенетический  метод позволяет изучать кариотип  (набор хромосом) клеток организма и выявлять геномные и хромосомные мутации.

Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования (например, доминантный, рецессивный) того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях. Этот метод широко используется в селекции и работе медико-генетических консультаций.

Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.

Биохимические методы исследования основаны на изучении активности ферментов и химического состава клеток, которые определяются наследственностью. С помощью этих методов можно выявить генные мутации и гетерозиготных носителей рецессивных генов.

Популяционно-статистический метод позволяет рассчитывать частоту встречаемости генов и генотипов в популяциях.

развития и  существования. Отдельный  признак  называется феном. К фенотипическим признакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и тому подобное), но и анатомические (объем желудка, строение печени и тому подобное), биохимические (концентрация глюкозы и мочевины в сыворотке крови и так далее) и другие.

1.5. Основные этапы развития генетики.

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в  связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. 

Развитию науки  о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности. Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем (1822-1884), который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары.

Краткое изложение  сути гипотез Менделя 

1.Каждый признак данного организма контролируется парой аллелей.

2.Если организм содержит два различных аллеля для данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого признака (рецессивного).

3.При мейозе каждая пара аллелей разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепления).

4.При образовании мужских и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).

5.Каждый аллель передается из поколения в поколение как дискретная  не изменяющаяся единица.

6.Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших  источников изменчивости, а именно механизм сохранения приспособленности  признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее  развитие генетики было связано с  изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

На втором этапе Август Вейсман (1834-1914) показал, что половые клетки обособлены от остального организма и поэтому не подвержены влияниям, действующим на соматические ткани.

Несмотря на убедительные опыты Вейсмана, которые было легко проверить, победившие в советской биологии сторонники Лысенко долго отрицали генетику, называя ее вейсманизмом-морганизмом. В  этом случае идеология победила науку, и многие ученые, как например, Н.И.Вавилов, были репрессированы.

На третьем этапе Гюго де Фриз (1848-1935) открыл существование наследуемых мутаций, составляющих основу дискретной изменчивости. Он предположил, что новые виды возникали вследствие мутаций.

Мутации это частичное  изменение структуры гена. Конечный ее эффект- изменение свойств белков, кодируемых мутантными генами. Появившийся в результате мутации признак не исчезает, а накапливается. Мутации вызываются радиацией, химическими соединениями, изменением температуры и могут быть просто случайными. 

На четвертом этапе  Томас Моган (1866-1945) создал хромосомную теорию наследственности, в соответствии с которой каждому биологическому виду присуще строго определенное число хромосом.

На пятом этапе Г. Меллер в 1927 году установил, что генотип может изменяться под действием рентгеновских лучей. Отсюда берут свое начало индуцированные мутации, и то, что впоследствии было названо генетической инженерией с ее грандиозными возможностями и опасностями вмешательства в генетический механизм.

На шестом этапе Дж. Бидл и Э. Татум в 1941 году выявили генетическую основу биосинтеза.

  На седьмом этапе Джеймс Уотсон и Френсис Крик предложили модель молекулярной структуры ДНК и механизм ее репликации. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.


 

 

 

 

 

 

В период с 40-х  годов и по настоящие время  сделан ряд открытия (в основном на микроорганизмах) совершенно новых  генетических явлений, раскрывших возможности  анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним  признаком, выделили чистую ДНК и  перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

 

В настоящее  время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней – это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической  дискретности хромосом. В этой области  сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели – разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты – ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов – генотипе.

Раскрывающиеся перспективы  синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

За последние  десятилетия произошло качественное изменение генетики как науки: возникла новая методология исследований - генетическая инженерия, которая революционизировала  генетику и привела к бурному развитию молекулярной генетики и генно-инженерной биотехнологии.        

Современное развитие общей и частной генетики, молекулярной генетики и генетической инженерии  происходит с взаимным обогащением  идеями и методами и составляется путем чисто генетического анализа, т.е. получения мутаций и проведения определенных скрещиваний. Удалось раскрыть многие фундаментальные законы жизни, т.е. уже на ранних этапах своего развития генетика стала точной экспериментальной наукой.

 

Без высокоразвитой общей и молекулярной генетики не может быть эффективного продвижения  вперед практически ни в одной области современной биологии, селекции, охраны наследственного здоровья людей.

Не меньшее  значение имеет генетика и генетическая инженерия в развитии народного  хозяйства.

Современная селекция использует методы индуцированных мутаций  и рекомбинаций, гетерозиса, полиплоидии, иммуногенетики, клеточной инженерии, отдаленной гибридизации, белковых и ДНК-маркеров и другие. Их внедрение в селекционных центрах исключительно плодотворно.

В настоящее  время генно-инженерным путем осуществляется промышленный микробиологический синтез ряда продуктов, необходимых для медицины, сельского хозяйства и промышленности. Синтез других ценных продуктов ведется в культурах клеток.

Развитие генетики микроорганизмов в значительной степени определяет эффективность  микробиологической промышленности.

Сейчас намечается новый  этап развития генетической инженерии - переход к использованию в  качестве источников ценных продуктов  растений и животных с пересаженными  в них генами, отвечающими за синтез соответствующих продуктов, т.е. создание и использование трансгенных растений и животных. Путем создания трансгенных организмов будут решаться и проблемы получения новых сортов растений и пород животных с повышенной продуктивностью, а также устойчивостью к инфекционным заболеваниям и неблагоприятным условиям среды.

Развитие генной инженерии создало принципиально  новую основу для конструирования  последовательностей ДНК, нужную исследователям. Успехи в области экспериментальной  биологии позволили создать методы введения таких искусственно созданных генов в ядра яйцеклеток или сперматозоидов. В результате возникла возможность получения трансгенных животных, т.е. животных, несущих в своем организме чужеродные гены.

Одним из первых примеров успешного создания трансгенных животных было получение мышей, в геном которых был встроен гормон гена роста крысы. Некоторые из таких трансгенных мышей росли быстро и   достигали размеров, существенно превышавших контрольных животных.

Первая в мире обезьяна с измененным генетическим кодом  появилась на свет в Америке. Самец по кличке Энди родился после того, как в яйцеклетку его матери был внедрен ген медузы. Опыт проводился с макакой-резусом, которая гораздо ближе по своим биологическим признакам к человеку, чем любые другие животные, до сих пор подвергавшиеся экспериментам по генетической модификации. Ученые говорят, что применение этого метода поможет им при разработке новых способов лечения таких болезней, как рак груди и диабет. Однако, как сообщает ВВС, этот эксперимент уже вызвал критику со стороны организаций по защите животных, которые опасаются, что эти исследования приведут к страданиям множества приматов в лабораториях.

 Создание гибрида  человека и свиньи. Из человеческой  клетки извлекается ядро и  имплантируется в ядро яйцеклетки  свиньи, которую предварительно освободили от генетического материала животного. В результате получился эмбрион, который прожил 32 дня, пока ученые не решили его уничтожить. Исследования проводятся как всегда ради благородной цели: поиска лекарств от заболеваний человека. Несмотря на то, что попытки клонировать человеческие существа не одобряются многими учеными и даже теми, кто создал овечку Долли, подобные эксперименты будет трудно остановить, так как принцип техники клонирования уже известен многим лабораториям.

  В настоящее время интерес к трансгенным животным очень велик. Это объясняется двумя причинами. Во-первых, возникли широкие возможности для изучения работы чужеродного гена в геноме организма-хозяина, в зависимости от места его встраивания в ту или иную хромосому, а также строения регуляторной зоны гена. Во-вторых, трансгенные сельскохозяйственные животные могут представлять в будущем интерес для практики.  

 

Огромное значение для медицины приобретает разработка методов дородовой диагностики  генетических дефектов и тех особенностей строения генома человека, которые способствуют развитию тяжелых заболеваний: рака, сердечнососудистых, психических и других.

Поставлена  задача создания национального и  глобального генетического мониторинга, т.е. слежения за генетическим грузом и динамикой генов в наследии людей. Это будет иметь большое значение для оценки влияния мутагенов среды и контроля демографических процессов.

Информация о работе Основные проблемы генетики и роль воспроизводства в развитии живого