Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 19:07, доклад
В основе работы растрового электронного микроскопа (РЭМ) лежит сканирование поверхности образца сфокусированным электронным лучом (построчное перемещение луча вдоль поверхности образца), поэтому его часто еще называют сканирующим электронным микроскопом (СЭМ), что ближе к общепринятому английскому названию – scanning electron microscope (SEM).
В основе работы растрового электронного
микроскопа (РЭМ) лежит сканирование
поверхности образца
Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (до 0,4 нанометра) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым веществом.
Современный РЭМ позволяет работать в широком диапазоне увеличений приблизительно от 10 крат (то есть эквивалентно увеличению сильной ручной линзы) до 1 000 000 крат, что приблизительно в 500 раз превышает предел увеличения лучших оптических микроскопов.
Принцип работы
Принципиальная схема РЭМ: тонкий электронный зонд (электронный пучок) направляется на анализируемый образец. В результате взаимодействия между электронным зондом и образцом возникают низкоэнергетичные вторичные электроны, которые отбираются детектором вторичных электронов. Каждый акт столкновения сопровождается появлением электрического сигнала на выходе детектора. Интенсивность электрического сигнала зависит как от природы образца (в меньшей степени), так и от топографии (в большей степени) образца в области взаимодействия. Таким образом, сканируя электронным пучком поверхность объекта возможно получить карту рельефа проанализированной зоны.
Тонкий электронный зонд генерируется электронной пушкой, которая играет роль источника электронов, и фокусируется электронными линзами (обычно электромагнитными, иногда электростатическими). Катушки, расположенные согласно двум взаимоперпендикулярным направлениям (x, y), перпендикулярным направлению пучка (z) и контролируемые синхронизированными токами, позволяют подвергнуть зонд сканированию подобно сканированию электронного пучка в электронно-лучевой трубке телевизора. Электронные линзы (обычно тороидальные магнитные) и отклоняющие катушки образуют систему, называемую электронной колонной.
В современных РЭМ изображение регистрируется исключительно в цифровой форме, но первые РЭМы появились в начале 1960 годов задолго до распространения цифровой техники и поэтому изображение формировалось способом синхронизации развёрток электронного пучка в кинескопе с электронным пучком в РЭМ и регулировки интенсивности трубки вторичным сигналом. Изображение образца тогда появлялось на фосфоресцирующем экране кинескопа и могло быть зарегистрировано на фотопленке.
Виды взаимодействия электронов с веществом
Электроны зонда (пучка) взаимодействуют с материалом образца и генерируют различные типы сигналов: вторичные электроны, обратноотраженные электроны, Оже-электроны, рентгеновское излучение, катодолюминесценция и т. д. Эти частицы и излучение являются носителями информации о топографии и материале образца.
В результате взаимодействия с атомами образца электроны первичного пучка могут передать часть своей энергии электронам образца. В результате такого взаимодействия может произойти отрыв электронов. Такие электроны называются вторичными. Эти электроны обычно обладают небольшой энергией (порядка 50 эВ). Часто электрон первичного пучка обладает энергией, достаточной для появления нескольких вторичных электронов.
Так как энергия вторичных
Принимая во внимание, что вторичные электроны генерируются приповерхностными слоями, они очень чувствительны к состоянию поверхности. Минимальные изменения отражаются на количестве собираемых электронов. Таким образом этот тип электронов несет в себе информацию о рельефе (топографии) образца. Однако, они мало чувствительны к составу образца.
Схема РЭМ, оснащенного детектором рентгеновских лучей — «РСМА» (микрозондом)
РЭМ JEOL JSM 6430F
Основа сканирующего электронного микроскопа — электронная пушка и электронная колонна, функция которой состоит в формировании остросфокусированного электронного зонда средних энергий (200 эВ — 50 кэВ) на поверхности образца. Прибор обязательно должен быть оснащен вакуумной системой. Также в каждом РЭМ есть предметный столик, позволяющий перемещать образец минимум в трех направлениях. При взаимодействии электронов с объектом возникают несколько видов сигналов, каждый из которых улавливается специальным детектором (см. ниже). Соответственно, изображения, продуцируемые микроскопом, могут быть построены с использованием различных сигналов, часто нескольких сигналов одновременно (например, изображение во вторичных электронах, изображение в отраженных электронах, рентгеновское изображение (карта)).
РЭМ оснащаются детекторами позволяющими отобрать и проанализировать излучение возникшее в процессе взаимодействия и частицы изменившие энергию в результате взаимодействия электронного зонда с образцом. Разработанные методики позволяют исследовать не только свойства поверхности образца, но и визуализировать информацию о свойствах подповерхностных структур.
Основные типы сигналов, которые генерируются и детектируются в процессе работы РЭМ:
Все возможные типы детекторов, установленные на одном приборе встречаются крайне редко.
Детекторы вторичных электронов — первый и традиционно устанавливаемый на все РЭМ тип детекторов. В этом режиме разрешающая способность РЭМ максимальна. Разрешение детекторов вторичных электронов в современных приборах уже достаточно для наблюдения субнанометровых объектов. Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости, примерно на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца. Микрофотография пыльцы демонстрирует возможности режима ВЭ РЭМ.
Отражённые электроны (ОЭ) — это электроны пучка, отражённые от образца упругим рассеиванием. ОЭ часто используются в аналитическом РЭМ совместно с анализом характеристических спектров рентгеновского излучения. Поскольку интенсивность сигнала ОЭ напрямую связана со средним атомным номером (Z) облучаемой в данным момент электронным пучком области образца, изображения ОЭ несут в себе информацию о распределении различных элементов в образце. Например, режим ОЭ позволяет обнаружить коллоидные золотые иммунные метки диаметра 5-10 нм, которые очень тяжело или даже невозможно обнаружить в биологических объектах в режиме ВЭ. Микрофотография поверхности аншлифа металл-оксидной системы демонстрирует возможности режима ОЭ РЭМ.
Характеристическое
Обычно для получения
Растровые микроскопы применяются как исследовательский инструмент в физике, электронике, биологии, фармацевцике, медицине, материаловедении, и т. д. Их главная функция — получение увеличенного изображения исследуемого образца и/или изображений образца в различных регистрируемых сигналах. Сопоставление изображений, полученных в разных сигналах, позволяют делать вывод о морфологии и составе поверхности.
Информация о работе Основы работы растрового электронного микроскопа