Автор работы: Пользователь скрыл имя, 14 Декабря 2013 в 09:26, реферат
Прио́ны (англ. prion от protein — «белок» и infection — «инфекция», слово предложено в 1982 году Стенли Прузинером) — особый класс инфекционных агентов, представленных белками с аномальной третичной структурой и не содержащих нуклеиновых кислот.
Прионы не являются живыми организмами, но они могут размножаться, используя функции живых клеток (в этом отношении прионы схожи с вирусами). Прион — это белок с аномальной трёхмерной (третичной) структурой, способный катализировать конформационное превращение гомологичного ему нормального клеточного белка в себе подобный (прион).
Наследсвенность
Локализация гена PRNР
PRNP
Был идентифицирован ген, кодирующий нормальный белок PrP — PRNP, локализованный на 20-й хромосоме. При всех наследственных прионных заболеваниях имеет место мутация этого гена. Было выделено много различных мутаций (около 30) этого гена, и получающиеся при этом мутантные белки более склонны к укладке в ненормальную (прионную) форму. Все такие мутации наследуются аутосомно-доминантно. Это открытие показало дыру в общей теории прионов, гласящей, что прионы могут переводить в прионную форму только белки идентичного аминокислотного состава. Мутации могут иметь место по всему гену. Некоторые мутации приводят к растяжению октапептидных повторов на N-конце белка PrP. Другие мутации, приводящие к появлению наследственной прионной болезни, могут происходить в позициях 102, 117 и 198 (синдром Герстмана — Штраусслера — Шейнкера), 178, 200, 210 и 232 (болезнь Крейтцфельдта — Якоба) и 178 (фатальная семейная бессонница).
Заражение
По данным современных исследований, основной путь приобретения прионных заболеваний — поедание заражённой пищи. Считается, что прионы могут оставаться в окружающей среде в останках мёртвых животных, а также присутствуют в моче, слюне и других жидкостях и тканях тела. Из-за этого заражение прионами может произойти и в ходе пользования нестерильными хирургическими инструментами. Они также могут долго сохраняться в почве за счёт связывания с глиной и другими почвенными минералами.
Группа исследователей из Калифорнийского университета во главе с нобелевским лауреатом Стенли Прузинером доказала, что прионная инфекция может развиться из прионов, содержащихся в навозе. А поскольку навоз присутствует вокруг многих водоёмов и на пастбищах, это даёт возможность для широкого распространения прионных болезней. В 2011 году было сообщено об открытии прионов, передающихся по воздуху в частицах аэрозоля (то есть воздушно-капельным путём). Это открытие было сделано в ходе эксперимента на заражённых скрейпи мышах. Также в 2011 году было опубликовано предварительное доказательство того, что прионы могут передаваться с получаемым из мочи человеческим менопаузальным гонадотропином, применяемым для лечения бесплодия.
Стерилизация
Размножение инфекционных агентов, содержащих нуклеиновые кислоты, зависит от нуклеиновых кислот. Однако прионы увеличивают свою численность, изменяя структуру нормальной формы белка на прионную. Поэтому стерилизация против прионов должна включать их денатурацию до состояния, в котором бы они были неспособны изменять конфигурацию других белков. Прионы в большинстве своём устойчивы к протеазам, высокой температуре, радиации и хранению в формалине, хотя эти меры и снижают их инфективность. Эффективная дезинфекция против прионов должна включать гидролиз прионов или повреждение/разрушение их третичной структуры. Это можно достичь обработкой хлорной известью, гидроксидом натрия и сильнокислыми моющими веществами. Пребывание в течение 18 минут при температуре 134 °C в герметичном паровом автоклаве не может деактивировать прионы. Как потенциальный метод для деактивации и денатурации прионов в настоящее время изучается озоновая стерилизация.Ренатурация полностью денатурированного приона до инфективного состояния зафиксирована не была, однако для частично денатурированных прионов в некоторых искусственных условиях это возможно.
Прионы и тяжёлые металлы
Согласно недавним исследованиям, нарушение обмена тяжёлых металлов в мозге играет важную роль в нейротоксичности, связанной с PrPSc, хотя с имеющейся на сегодняшний день информацией сложно объяснить механизм, стоящий за всем этим. Есть гипотезы, объясняющие это явление тем, что PrPC играет некоторую роль в метаболизме металлов, и его нарушение из-за агрегации этого белка (в виде PrPSc) в фибриллы вызывает дисбаланс обмена тяжёлых металлов в мозге. Согласно другой точке зрения, токсичность PrPSc усиливается из-за включения в агрегаты PrPC-связанных металлов, что приводит к образованию комплексов PrPSc с окислительно-восстановительной активностью. Физиологическое значение некоторых комплексов PrPC с металлами известно, а значение других — нет. Патологическое действие PrPC-связанных металлов включает индуцированное металлом окислительное повреждение и в некоторых случаях переход PrPC в PrPSc-подобную форму.
Потенциальное лечение и диагностика
Благодаря компьютерному моделированию учёным удалось найти соединения, которые могут быть лекарством против прионных заболеваний. Например, одно соединение может связываться с углублением в PrPC и стабилизировать его структуру, снижая количество вредоносных PrPSc.
Недавно были описаны антиприонные антитела, способные проходить через гематоэнцефалический барьер и действующие на цитозольные прионы.
В последнее десятилетие был достигнут некоторый прогресс в инактивации инфективности прионов в мясе при помощи сверхвысокого давления.
В 2011 году было открыто, что прионы могут разлагаться лишайниками.
Большое практическое значение имеет проблема диагностики прионных заболеваний, в частности, губчатой энцефалопатии крупного рогатого скота и болезни Крейтцфельдта — Якоба. Их инкубационный период составляет от месяца до десятилетий, в течение которых человек не испытывает никаких симптомов, даже если процесс превращения нормальных мозговых белков PrPC в прионы PrPSc уже начался. В настоящее время фактически нет способа обнаружить PrPSc, кроме как при помощи проверки ткани мозга нейропатологическими и иммунногистохимическими методами уже после смерти. Характерной чертой прионных заболеваний является накопление прионной формы PrPSc белка PrP, однако в легко получаемых жидкостях и тканях тела, как кровь и моча, он содержится в очень низких концентрациях. Исследователи пытались разработать метод измерения доли PrPSc, но сейчас по-прежнему нет полностью признанных методов по использованию для этих целей таких материалов, как кровь.
В 2010 году группа исследователей из Нью-Йорка описала способ обнаружить PrPSc даже тогда, когда его доля в ткани мозга равна одной на сто миллиардов (10−11). Этот метод сочетает амплификацию с новой технологией, называемой Surround Optical Fiber Immunoassay (SOFIA) («оптический иммунологический анализ прилежащих волокон»), и некоторыми специфическими антителами против PrPSc. После амплификации с концентрированием всех PrPSc, возможно содержащихся в образце, образец помечается флуоресцентным красителем с антителами для специфичности и в конце загружается в микрокапиллярную трубку. Потом ,эта трубка помещается в специальный аппарат так, что она оказывается полностью окружённой оптическими волокнами и весь свет, испускаемый на трубку, поглощается красителем, предварительно возбуждённым лазером. Эта техника позволяет обнаружить PrPSc даже после небольшого количества циклов перехода в прионную форму, что, во-первых, снижает возможность искажения результата артефактами эксперимента, и, во-вторых, ускоряет ход процедуры. Исследователи проверяли по этой технике кровь кажущихся здоровыми овец, в действительности заражённых скрейпи. Когда болезнь стала очевидной, был исследован и их мозг. Таким образом, исследователи получили возможность сравнить анализы крови и мозговой ткани животных с симптомами болезни, со скрытой болезнью и неинфицированных. Результаты наглядно показали, что вышеописанная техника позволяет обнаружить PrPSc в организме задолго до появления первых симптомов.
Антиприонная активность была обнаружена у астемизола.
Прионы грибов
Прионы грибов
Формирование прионов [PSI+] отменяет накопление красного пигмента, образующегося в результате мутации в гене ade1 (снизу), в результате чего колонии дрожжей становятся белыми (сверху) |
Белки, способные к передаче их конформации по наследству, то есть неменделевской наследственности были открыты у дрожжей Saccharomyces cerevisiae Ридом Уикнером в начале 1990-х. Из-за сходства с прионами млекопитающих эти альтернативные наследуемые конформации белков были названы прионами дрожжей. Позже прионы были открыты и у гриба Podospora anserina.
Группа Сьюзан Линдквист из Института Уайтхед показала, что некоторые прионы грибов не связаны с каким-либо болезненным состоянием, а могут играть полезную роль. Однако, исследователи из NIH предоставили аргументы в пользу того, что прионы грибов могут снижать жизнеспособность клеток. Поэтому вопрос о том, являются ли прионы грибов болезнетворными агентами или же они играют некую полезную роль, остаётся нерешённым.
По состоянию на 2012 год известно 11—12 прионов у грибов: семь у Saccharomyces cerevisiae ([Sup35, Rnq1, Ure2, Swi1, Mot3, Cyc8, Sfp1, Mca1', вакуолярная протеаза B и Mod5) и один у Podospora anserina (НЕТ-s, МАР-киназы).
Из них наиболее хорошо изучен фактор терминации трансляции Sup35 (гомолог eRF3). Клетки, в которых присутствует прионная форма Sup35, называются клетками [PSI+]. Такие клетки имеют изменённое физиологическое состояние и изменённый уровень экспрессии некоторых генов, что позволило выдвинуть гипотезу о том, что у дрожжей образование прионов может играть адаптативную роль.
Статья об открытии приона Mca1 была впоследствии отвергнута, так как воспроизвести результаты эксперимента не удалось. Примечательно, что большинство прионов грибов основаны на глутамин/аспарагин-богатых повторах, исключениями являются Mod5 и HET-s.
Исследования прионов
грибов убедительно подтверждают «чисто
белковую» гипотезу, так как очищенные
белки, выделенные из клеток с белками
в прионной форме, демонстрировали
способность перестраивать
Как упоминалось выше, прионы грибов, в отличие от прионов млекопитающих, передаются следующему поколению. Иными словами, у грибов существует механизм прионной (белковой) наследственности, который может служить ярким примером истинно цитоплазматического наследования.
Список литературы
Содержание
1 История
1.1 Описание прионных заболеваний
1.2 Развитие представлений о прионах
2 Структура
2.1 Изоформы
2.2 PrPC
2.3 PrPSc
3 Механизм размножения прионов
4 Функции PrP
5 Гипотезы о составе прионов
5.1 «Чисто белковая» гипотеза
5.2 Мультикомпонентная гипотеза
5.3 Вирусная гипотеза
6 Прионные заболевания
6.1 Губчатая энцефалопатия крупного рогатого скота
6.2 Куру
6.3 Пути возникновения
6.3.1 Спонтанное возникновение
6.3.2 Наследственность
6.3.3 Заражение
6.3.3.1 Стерилизация
6.4 Прионы и тяжёлые металлы
6.5 Потенциальное лечение и диагностика
7. Прионы грибов
8.Содержание
9. Список литературы