Развитие концепций информации в контексте биологии. Л.в. попов, а.е. седов, с.в. чудов i

Автор работы: Пользователь скрыл имя, 28 Января 2013 в 17:22, реферат

Описание работы

Как изменялось понятие “информация” в разные периоды развития биологии и в разных ее контекстах? Как достижения различных биологических наук обогащали это понятие и как, в свою очередь, результаты других наук расширяли и углубляли содержание понятия “информация” и методы ее количественных оценок и этим способствовали проникновению информационного подхода в биологию.

Файлы: 1 файл

биофизика, теория связей и информации.doc

— 74.50 Кб (Скачать файл)

РАЗВИТИЕ  КОНЦЕПЦИЙ ИНФОРМАЦИИ В КОНТЕКСТЕ  БИОЛОГИИ. Л.В. ПОПОВ, А.Е. СЕДОВ, С.В. ЧУДОВ I. ПОИСКИ МЕЖДИСЦИПЛИНАРНОЙ МЕТОДОЛОГИИ: ИСТОРИЯ И СОВРЕМЕННОСТЬ.

Как изменялось понятие “информация” в разные периоды развития биологии и в разных ее контекстах? Как достижения различных биологических наук обогащали это понятие и как, в свою очередь, результаты других наук расширяли и углубляли содержание понятия “информация” и методы ее количественных оценок и этим способствовали проникновению информационного подхода в биологию?  
 
Различные исследователи предлагали как разные словесные определения, так и разные количественные меры информации. Анализ истории термина «информация» позволяет глубже понять некоторые современные аспекты и разночтения его употребления. Это латинское слово означает: «придание формы, свойств». В XIY веке так называли божественное «программирование» - вложение души и жизни в тело человека. Согласно легенде, в XYI веке эта прерогатива Бога была присвоена рабби Левом, в пражском гетто создавшим глиняного «робота» - Голема, который «оживал» всякий раз, когда хозяин вкладывал ему под язык «программу»- текст с именем Бога (шем). Примерно в это же время слово «информация» стало означать и передачу знаний с помощью книг. Таким образом, смысл этого слова смещался от понятий «вдохновение», «оживление» к понятиям «сообщение», «сюжет». И рамками лишь двух последних понятий пытались ограничить развитие информационных концепций те советские философы, которые были противниками кибернетического подхода к естественнонаучным и гуманитарным проблемам.  
 
Сейчас мы говорим, что получаем информацию (сведения), когда узнаем что-либо о событии, результат которого не был предопределен; и чем более ожидаемым - вероятным - является событие, тем меньше информации мы получаем. На таких рациональных представлениях о том, как уменьшается неопределенность при получении тех или иных сведений, и базируются научные концепции информации и количественные (вероятностные) меры ее оценки.  
 
Первыми работами в этом направлении считают статьи Р. Хартли (1928 г.) [1] для равновероятных событий и К. Шеннона (1948 г.) [2] для совокупностей событий с различными вероятностями. И, хотя нельзя не отметить, что еще в 1933 г. появилась работа нашего соотечественника В.А. Котельникова о квантовании электрических сигналов, содержавшая знаменитую “теорему отсчетов”[3], в мировой научной литературе считается, что именно 1948 г. – это год зарождения теории информации и количественного подхода к информационным процессам.  
 
Появление этих работ было обусловлено стремительным развитием технических средств связи и необходимостью измерения “объемов” (количеств) передаваемых сведений. Теория информации возникла в недрах теории связи - как ее аппарат и фундамент. Это отражено уже в названии основополагающей статьи К. Шеннона - «Математическая теория связи». При этом сам Шеннон был против распространения его подхода на другие научные направления: он писал о специфике задач связи, о трудностях и ограничениях своей теории.  
 
Однако следующие три десятилетия стали периодом широчайшей экспансии теоретико-информационных представлений - развития как собственно теории информации, так и ее разнообразнейших приложений, благодаря которым сформировалась настоящая общенаучная – философская – информационная парадигма. Вовлеченными в этот процесс оказались и “чистые” математики, и кибернетики, и специалисты по теории систем, и физики, химики, биологи (работы которых мы и рассмотрим в данном цикле публикаций), и представители практически всех гуманитарных наук – лингвисты, психологи, социологи и философы.  
 
Для этого “взрыва” были определенные предпосылки, сформированные развитием физики. Математическое выражение для количества информации, введенное Р.Хартли и обобщенное К.Шенноном, - «копия» знаменитой формулы Л. Больцмана для физической энтропии системы. Это «совпадение» далеко не случайно - оно свидетельствовало о каких-то глубинных общностях. Потребовалась универсальная мера гетерогенности систем, которая позволила бы сравнивать их сложность и многообразие. И в дальнейшем эта мера использовалась как в термодинамике (в моделях идеального газа), так и в биологии (при анализе смысла генетических текстов, развития организма, работы нервной системы, экологической сукцессии и эволюции).  
 
Проникновение термодинамических представлений в теоретико-информационные исследования привело к переосмыслению работ классиков термодинамики и статистической физики. В публикациях того периода упоминаются работы П. Лапласа, Р. Майера, Д.Джоуля, Г. Гельмгольца, С. Карно, Р. Клаузиуса, Дж. Томпсона, Нернста, Дж. Гиббса, Л. Больцмана, Дж. Максвелла и Л. Сцилларда и других физиков. Но вместе с этими именами вернулись и соответствующие проблемы и парадоксы (например, «демон Максвелла»).  
 
Представления термодинамики и статистической физики создатели теории информации стремились расширить до ранга общесистемных моделей. Своеобразным этапом в этом процессе стали работы Л. Бриллюэна [4], который на основе введенного им «негэнтропийного принципа» обосновал связь понятия количества информации с понятием физической энтропии. Пользуясь современными терминами, отметим, что предметом не только этих первых, но и большинства более поздних теоретико-информационных работ была лишь “микроинформация” - информация, которую система не запоминает и которая является мерой разнообразия возможных микросостояний, определяющих данное макросостояние системы.

Развитие  теоретических термодинамических  представлений привело, в частности, к выводам об возможности построения статистической - как равновесной, так  и неравновесной - термодинамики на базе теории информации [5], а впоследствии - и к построению (в том числе и на базе экспериментов) термодинамической теории информационных процессов, в которой установлены связи между информационными и энергетическими характеристиками [6]. По существу другой, дополнительный подход к понятию информации - подход кибернетический, охватывающий структуры и связи систем. В 1936 году А.Тьюринг и Э.Пост независимо друг от друга разработали концепцию “абстрактной вычислительной машины”. Затем А.Тьюринг описал гипотетический универсальный преобразователь дискретной информации (“машину Тьюринга”). Н. Винер в 1941 году опубликовал свой первый труд об аналогиях между работой математической машины и нервной системы живого организма, а в 1948 году - фундаментальное исследование “Кибернетика, или Управление и связь в животном и машине” [7]. На необходимость двух принципиально различных подходов к построению теории информации указывал Дж. фон Нейман, отмечавший, что вероятностно-статистический и кибернетический подходы необходимы для информационного описания двух разных процессов (систем) – статистических и динамических.  
 
Следует отметить, что важную роль в развитии теории информации сыграли математические исследования: работы А.Н. Колмогорова [8] и его школы привели к новым определениям понятия количества информации - не только вероятностному, но и комбинаторному и алгоритмическому. Алгоритмическое количество информации рассматривалось как минимальная длина программы (сложность), позволяющая однозначно преобразовывать одно множество в другое. Эти подходы позволили весьма расширить круг конкретных задач, в частности - вовлечь во многие биологические исследования мощь электронно-вычислительной техники.  
 
Понятие информации отнюдь не случайно оказалось ключевым для наиболее быстро развивающихся дисциплин – как общенаучных (общей теории систем, семиотики, синергетики), так и специальных (молекулярной генетики, нейробиологии, теории эволюции, экологии, лингвистики, психологии, теории связи и многих других). Полагали, что теория информации поможет разрешить узловые проблемы гуманитарных, естественных и технических наук. К этой позиции привели кризис механистического мировоззрения, всеобщая тяга к математизации науки, а также понимание того, что гуманитарные и естественные науки все еще не столь строги и прогностичны, как бурно прогрессировавшая теоретическая физика и ее технические приложения. Нужна была новая междисциплинарная методология, на которую возлагались очень большие ожидания.  
 
Биологи воспринимали шенноновскую теорию информации как спасительный маяк, освещавший путь к созданию теоретической биологии – столь же строгой и общезначимой, как теоретическая физика [9]. Эти надежды были вызваны бурными успехами как зарождавшейся кибернетики, так и экспериментально-аналитических исследований сразу в нескольких разделах биологии. Именно полвека назад, в 1948 г., когда были созданы концепции кибернетики и основы математического аппарата общей теории информации, к анализу систем, сходных с модельными объектами этих теорий, но нерукотворных – существующих в организмах миллиарды лет – подошли две различных ветви экспериментальной биологии – генетика и нейрофизиология.

Развитие  генетических представлений Г. Менделя  в теории Т. Моргана о локализации  генов в хромосомах (1912 г.), работы Г. Дейла о механизмах передачи электрохимического импульса в нейронах (1929 г.) и созданная Л.Берталанфи теория биологических объектов как открытых систем (1932 г.) к середине нашего века привели к исследованиям разнообразных материальных носителей биологической информации. В 1947 г. О. Эвери, К. Мак-Леод и М. Мак-Карти доказали роль ДНК в наследственности у бактерий; в 1949 г. Э. Чаргафф определил правила соотношений нуклеотидов в ДНК – основы понимания ее первичной структуры и функций. В 1946-49 гг. Р. Джерард с сотрудниками разработали микроэлектродную технику анализа проведения импульсов в отдельных нейронах. Изначально как информационные макромолекулы (ДНК, РНК, белки), так и нейронные пути передачи сигналов рассматривались как полные аналоги рукотворных объектов – соответственно текстов и каналов связи.  
 
Биологические системы сразу же стали очень перспективными объектами для кибернетики. С одной стороны, это – физические, материальные объекты, доступные разным методам экспериментальных исследований, воспроизводимые (и даже самовоспроизводящиеся). С другой стороны – управление и информационный обмен являются важнейшими характеристиками поведения этих систем. Появление математических моделей и теорий управления и информационного обмена, общих для биологических и технических систем - а именно так понимал кибернетику Н. Винер - позволяло рассчитывать на математизацию биологии, на построение теоретической биологии по образу и подобию теоретической физики.  
 
Тем самым физикализм и редукционизм оказались у самих истоков новой, еще не вполне ясно очерченной научной дисциплины – биофизики. Биологией занялись многие иследователи, получившие фундаментальное физическое или математическое образование и имевшие, как выразился И.М. Гельфанд, «прометеев комплекс» – стремление осветить тайны живого. И действительно, они были энтузиастами, уверенными в неисчерпаемых возможностях применения кибернетических подходов в биологии.  
 
Международные конференции и симпозиумы по теории информации регулярно проходили с начала 1950-х гг. в Англии, Италии, США, а впоследствии – и в Германии, Канаде, Чехословакии. Организатором, председателем и редактором материалов некоторых из них – посвящЈнных применению теории информации в биологии (в 1953 и 1956 гг.) и в психологии (в 1954 г.) – был Г. Кастлер [10,11]. К середине 1950-х гг. теорией информации были “охвачены” разнообразные проблемы биологии: кодирование белков в ДНК, структурные изменения белков, проводимость нервов и мембран, работа иммунной системы, морфогенез клеточных органелл и модельных систем, разрушение белков и вымирание особей при старении и лучевых поражениях, зрительная перцепция, решение логических задач человеком [11]. В 1963 г. объектами теоретико-информационного анализа стали также открытый к тому времени ДНК-белковый код, экологические модели, нейро- и психофизиологические феномены [12]. В 1966 г. состоялся 1-й симпозиум по теоретической биологии, “пронизанный” информационными проблемами и моделями, под руководством известного эмбриолога и генетика К. Уоддингтона; в нем участвовали крупнейшие биологи, а также математики, физики и химики [9].  
 
“Классическая” шенноновская теория информации позволяет измерять информацию текстов и сообщений, исследовать и разрабатывать приемы ее кодирования в передатчике и декодирования в приемнике, измерять пропускную способность канала связи между ними, вычислять уровень шума в канале и минимизировать его воздействия. Развитие кибернетики и теории информации как одного из ее разделов были обусловлены с представлениями о различных системах как об ориентированных графах - блок-схемах из элементов, соединенных связями; термодинамическую негэнтропию - информацию - рассматривали как «наполнитель» этих элементов-блоков, «перетекающий» между ними по каналам связи. Полагали, что информация как универсальная мера сложности и гетерогенности любых систем, анализ кодов, каналов связи и шумов станут компонентами будущей общенаучной методологии – особенно на волне триумфов физикализма в точных и естественных науках. Уже в 1956 г. Г. Кастлер отметил, что “теория Шеннона была с энтузиазмом принята психологами, лингвистами, историками, экономистами, библиотекарями, социологами и биологами, интересующимися самыми различными вопросами”. Однако тогда же он отметил и принципиальные ограничения этой теории: меры информации зависят от других характеристик систем; они относятся не к элементам, а к их совокупностям; они относительны, а не абсолютны; информационные емкости систем не всегда используются полностью [10,11]. Тем не менее, анализируя применения «приложений теории информации» в биологии, он показал, что «эти ограничения не столь серьезны, если постоянно помнить о них» ([11], с.195). Исключительно важно то, что уже в 1956 году Г.Кастлер в поисках новых подходов к проблемам биологии обратил внимание на семантическую сторону информации, которую начали исследовать в 1952 году Р.Карнап и И.Бар-Хиллел [13].  
 
Мера, предложенная Клодом Шенноном для анализа сообщений, передаваемых по каналам связи, стала чрезвычайно популярной среди биологов - из-за простоты ее вычисления, аддитивности по отношению к последовательно поступающим сообщениям и сходства с важной физической величиной – термодинамической энтропией. Однако она отнюдь не могла стать единственной и универсальной мерой количества информации. Именно применительно к биологическим объектам ее ограниченность выявилась особенно ярко: последовательное применение этой меры, то есть фактическая оценка лишь «микро-информации» биосистем, приводила к парадоксам. Так, например, Л.А. Блюменфельд показал, что тогда количество информации в теле человека - не больше, чем в неживых системах, состоящих примерно из такого же количества структурных элементов [14].  
 
Уже в 1950-е гг. Г. Кастлер понимал ограничения микроинформационного - статистического, или, как его еще называют теперь, синтаксического - подхода к биосистемам. Перечислив эти ограничения, он стал вводить в биологию понятие смысла, биологической упорядоченности. Концепция информации в его работах тех лет соответствует современным представлениям как о микроинформации, так и о макроинформации. Информация по Г.Кастлеру представляет собой «запоминание случайного выбора» - изначально случайный, а затем запомненный выбор одного или нескольких осуществленных вариантов из всей совокупности возможных. Макроинформация принципиально отличается от упомянутой выше микроинформации именно тем, что системы ее запоминают.  
 
В биологических системах именно проблемы запоминания, хранения, обработки и использования информации, необходимой для жизнедеятельности, развития и эволюции организмов и их сообществ выходят на первый план. Сохранив рациональное зерно шенноновской концепции, в которой количество информации служит статистической мерой, макроинформационный подход позволил ввести в рассмотрение также и понятие смысла информации.  
 
Теоретико-информационные методы стали распространяться на такие модели открытых термодинамически неравновесных динамических систем, в которых реализуются гетерогенные структуры и сопряженные процессы. Именно благодаря этим особенностям такие системы способны «запоминать» свои состояния; именно таковы все биологические системы.  
 
Остановимся еще на одном вопросе, который стал одним из узловых в развитии целого ряда направлений теоретической биологии. Речь идет о подходах к пониманию механизмов достижения упомянутого свойства “запоминания” макросистем: о критериях состояний систем, обладающих этим свойством. С точки зрения физики, специфика биологических систем заключена, в частности, в кинетической фиксации, или “запоминании” определенных черт структуры. Это свойство, по мнению авторов [15], “роднит структуры биологических систем с конструкциями искусственных машин или автоматов и позволяет говорить о выполнении ими определенных функций.”  
В частности, так называемая линейная память полимерной цепи - фиксация звеньев вдоль цепи, определяемая системой энергетических взаимодействий - дает возможность рассматривать именно молекулы биополимеров в качестве первой ступени разнообразия биологических структур [16] и предполагать, что именно на этом уровне происходила предбиологическая эволюция. Отметим, однако, что микроинформационный анализ биополимеров - на основе их первичных структур - оказался не эффективным, так как фактически он относится к модели так называемой “идеальной цепи” и не учитывает эффектов пространственных взаимодействий.  
 
Вернемся к семантической составляющей в концепциях биологической информации - к понятию ценности информации. В чисто теоретико-информационных исследованиях можно выделить два подхода к определению понятия ценной (полезной) информации, т.е. информации, которая помогает достижению цели. Если вероятность достижения цели велика, то ценность информации определяется по критерию минимизации затрат на ее получение [17]. Если же достижение цели маловероятно, то мерой ценности (полезности) информации может служить некая функция отношения вероятности достижения цели после и до получения информации [18, 19].  
Проблема ценности биологической информации, пожалуй, наиболее последовательно развивалась в трудах М.В. Волькенштейна, начиная с начала 1970-х гг. (см.[20]). Повышение ценности биологической информации трактовалось им как снижение избыточности (в теоретико-информационном смысле), как рост степени незаменимости информации в ходе эволюционного и индивидуального развития, и это возрастание ценности информации он предлагал рассматривать как один из важнейших принципов теоретической биологии. Представления о ценности биологической информации и информационный подход вообще активно использовались при разработке теорий и моделей самоорганизации и эволюционного развития [21–23].  
 
Переход с синтаксического уровня описания систем и процессов на семантический уровень происходит и в исследованиях распознавания и взаимного узнавания информационных макромолекул (ДНК, РНК и белков). В последние два десятилетия эти явления изучает биомолекулярная динамика на разных уровнях структур - как первичных, так и более высоких порядков. Информация, кодируемая на всех этих уровнях, связана с работой генов, самосборкой клеточных структур, мембранным транспортом и межклеточными коммуникациями - процессами, лежащими в основе жизнедеятельности и развития живых организмов.  
 
Как уже упоминалось выше, Дж. фон Нейман отметил, что для информационного описания двух разных процессов (систем) – статистических и динамических - необходимо два принципиально разных подхода. Однако в реальном мире, а не в мире моделей, строго разграничить эти два типа систем невозможно, это разные способы описания одних и тех же физических объектов. Более четко этот дуализм был сформулирован еще А.Розенблютом и Н.Винером [24], предложившими различать функциональное и бихевиористское (поведенческое) описание открытой - взаимодействующей с внешним миром - системы. При функциональном подходе изучают внутреннее устройство системы и выясняют, какие функции выполняют те или иные ее подсистемы, а при поведенческом - способы ее взаимодействия с внешним миром, закономерности ее реакций на те или иные внешние стимулы.  
 
Таким образом, с помощью абстракции “черного ящика” Н. Винер разграничил причинно-следственный и кибернетический подход к системам, обладающим целенаправленным (телеологическим) поведением, продекларировав принципиальный отказ от физического принципа причинности, от сведения поведения системы (динамики макропеременных) к физическому устройству этой системы или к ее внутренним микросостояниям, причем это было сделано именно для того, чтобы снять вопрос о принципиальном отличии живого от неживого, создать точную науку, равно применимую и к техническим системам автоматического регулирования, и к биологическим, и к социально-экономическим системам.  
 
Вопрос о фиксации состояний в открытых термодинамически неравновесных сложных системах, о возможности самопроизвольных процессов в таких системах стал одним из основных в междисциплинарном направлении, возникшем в начале 1970-х гг. и названном Г. Хакеном синергетикой [25]. В недрах синергетики даже сформировался специальный раздел – динамическая теория информации, у истоков которого были и Г. Хакен, и наш соотечественник Д.С. Чернавский [26,27]. Наблюдаемый факт пространственной и временной устойчивости самых разнообразных, в том числе и биологических, структур был объяснен И. Пригожиным на основе неравновесной термодинамики, назвавшим подобные системы диссипативными [28].  
 
Возвращаясь к вопросу о критериях, характеризующих устойчивость систем, упомянем о так называемой S-теореме Ю.Л. Климонтовича [29], согласно которой, информационная энтропия при переходе в более упорядоченное состояние убывает - происходит самоорганизация. Такой подход был использован в медико-биологической диагностике - в частности, при анализе кардиограмм и результатов биохимических тестов [30, 31].  
 
Как недавно отметил Ю.Л. Климонтович, уже система Больцмана является не замкнутой, а открытой, так как значение энергии в ней не фиксировано, а флуктуирует, так что Людвига Больцмана можно считать основоположником статистической теории открытых систем [32]. Основоположником же второго, динамического (поведенческого, кибернетического) подхода мы можем считать Анри Пуанкаре: под системой тот понимал именно динамическую систему уравнений - изменение решений этой системы во времени при варьировании тех или иных ее параметров (затухания, жесткости и т.п.) или начальных данных - не зависимо от того, какой физический или иной процесс эти уравнения описывают. При этом статистическую механику Больцмана он категорически отвергал, считая, что теория необратимых процессов и механика не совместимы.  
 
Эти два подхода - разные попытки их совместить или разграничить области их применимости - стали одним из главных сюжетов всего последующего развития наук о сложных открытых системах. Именно здесь сталкивались противоположные философские воззрения - во многом как отголосок давних споров механицизма и витализма, холизма и редукционизма. И эти споры не прекращаются по сей день.  
Все перечисленные подходы и методы немедленно находили применение в биофизических исследованиях и порождали надежду, что сложное поведение биологических систем наконец-то получит причинно-следственные объяснения. Однако всякий раз эта надежда оправдывалась лишь частично.  
 
Параллельно развивались и «кибернетические» методы – качественная теория дифференциальных уравнений, теория устойчивости движения, теория автоколебаний и автоматического регулирования, теория катастроф, теория динамических систем. Важнейшее открытие было сделано А.Н. Колмогоровым еще в 1943 году: он показал, что для детерминированных систем, в том числе и консервативных, принципиально возможен детерминированный хаос - их принципиально непредсказуемое поведение. Исследования этих феноменов привели к изучению новых математических объектов – странных аттракторов и фракталов, оказавшихся удивительно удобными концептуальными моделями, позволяющими понять принципы динамики и морфологии самых разных сложных систем, включая биологические.  
 
В целом можно отметить, что термодинамическая парадигма все более уступает место кибернетической, и хотя в ряде случаев возможны оба подхода, мир динамических систем явно богаче и шире того, что удается воспроизвести статистическими методами. Поэтому даже классики термодинамического подхода, например, И. Пригожин, все чаще отдают предпочтение подходу теории динамических систем.  
Двойственность биологических систем заключается, в частности, в том, что их можно рассматривать и как физические, и как своеобразные символьные системы [33]. Этот подход впоследствии оформился в самостоятельное научное направление – физическую семиотику [34]. Его преимуществом является, на наш взгляд, возможность достаточно полно использовать методы К. Шеннона (количественные оценки сложности собщений, пропускной способности каналов, уровней шумов и т.д.), оставаясь при этом в рамках семантической (семиотической) парадигмы.  
 
Упомянутый выше алгоритмический подход, развитый школой  
А.Н. Колмогорова, связал понятие информации с количественными мерами сложности. Теория сложности – весьма обширный раздел математики и программирования, содержащий немало нетривиальных и, к сожалению, пока мало использованных биологами результатов, потенциально важных для решения наиболее трудных проблем теоретической биологии (теории эволюции, биологии развития, экологии и многих других).  
 
В частности, становится ясным, что нельзя отождествлять сложность алгоритма и сложность порожденных этим алгоритмом структур. Это особенно наглядно в случае фрактальных структур, весьма часто встречающихся и в живой, и в неживой природе [35]. Поэтому, в частности, нельзя рассматривать генетические тексты как непосредственное зашифрованное описание порождаемых ими структур. Скорее, это - описания алгоритмов их пространственно-временной реализации, или даже алгоритмы построения автоматов, реализующих эти алгоритмы. По-видимому, именно поэтому сравнительно небольшой длине генетического кода организма соответствует огромный массив информации, необходимой как для непосредственного описания морфологических структур, так и их развития. Попытки разрешения этого парадокса были предприняты еще в 1950-х гг.: «изобретательность биологов» (по выражению Г.Кастлера) позволила анализировать многообразие цитоплазматических структур и принципы формообразования (см.[9], с.213-223; [36]).  
 
Разрешение этого парадокса, существующего до сих пор, может быть ключевым для понимания онтогенеза и эволюции: сравнительно небольшие изменения в генетических текстах могут приводить к разительным метаморфозам внешнего облика, к появлению новых таксонов с порой ошеломляющим разнообразием признаков. Так проблема огромного семантического веса небольших блоков информации проявляется в биосистемах. Именно такие ценные блоки - предмет поисков и анализа современных исследователей генома, функционально важных пептидов и других биополимеров. На наш взгляд, эти области современной эмпирической биологии - перспективное, но пока не реализованное поле приложения теории динамических систем.  
 
Применение теории информации в биологии до сих пор остается фрагментарным. Наиболее удачным оно было в и нейро- и психофизиологии и в изучении сигналов общения у различных животных; гораздо меньше удач, как ни странно, было в молекулярной генетике, в теории эволюции и в экологии. Однако теоретико-информационный подход к биосистемам проявляет удивительную “живучесть”. Это свидетельствует о необходимости и глубинной эвристической ценности теоретико-информационного анализа биосистем – несмотря на многочисленные свидетельства его недостаточности.  
 
Энтузиазм тех, кто использовал теорию информации в биологии, был вовсе не беспочвенным. О том, как взаимодействовали различные теоретико-информационые концепции с конкретными ветвями биологии, рассказывают следующие части нашей работы. Разумеется, в данной публикаций - первой из намеченных - нам удалось остановиться лишь на некоторых общих и частных проблемах.


Информация о работе Развитие концепций информации в контексте биологии. Л.в. попов, а.е. седов, с.в. чудов i