Специализация соединительной ткани в составе органов

Автор работы: Пользователь скрыл имя, 30 Сентября 2013 в 16:59, реферат

Описание работы

Соедини́тельная ткань — это ткань живого организма, не отвечающая непосредственно за работу какого-либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60—90 % от их массы. Выполняет опорную, защитную и трофическую функции. Соединительная ткань образует опорный каркас (строму) и наружные покровы (дерму) всех органов. Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

Содержание работы

1. Соединительная ткань
2.Рыхлая волокнистая соединительная ткань, межклеточное вещество
3.Эластические волокна
4.Аморфный компонент межклеточного вещества
5.Коллагеновые волокна

Файлы: 1 файл

СРС гиста.docx

— 31.07 Кб (Скачать файл)

АО «Медицинский университет Астана»

Кафедра гистологии, цитологии и эмбриологии

 

 

 

 

 

 

 

СРС на тему:

«Специализация  соединительной ткани в составе  органов.»

 

 

 

 

 

 

Подготовила: Ляшенко С.

108 ОЗ

Проверила: Яценко И. В.

 

Астана 2013г.

Содержание:

                            1. Соединительная ткань

2.Рыхлая волокнистая соединительная ткань, межклеточное вещество

                            3.Эластические волокна

                            4.Аморфный компонент межклеточного вещества

                            5.Коллагеновые волокна

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соединительная ткань

Соедини́тельная ткань — это ткань живого организма, не отвечающая непосредственно за работу какого-либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60—90 % от их массы. Выполняет опорную, защитную и трофическую функции. Соединительная ткань образует опорный каркас (строму) и наружные покровы (дерму) всех органов. Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

Большая часть твёрдой соединительной ткани является фиброзной (от лат. fibra — волокно): состоит из волокон коллагена и эластина. К соединительной ткани относят костную, хрящевую, жировую и другие. К соединительной ткани относят также кровь и лимфу. Поэтому соединительная ткань — единственная ткань, которая присутствует в организме в 4-х видах — волокнистом (связки), твёрдом (кости), гелеобразном (хрящи) и жидком (кровь, лимфа, а также межклеточная, спинномозговая и синовиальная и прочие жидкости).

Фасции, мышечные влагалища, связки, сухожилия, кости, хрящи, сустав, суставная сумка, сарколемма и перемизий мышечных волокон, синовиальная жидкость,кровь, лимфа, сосуды, капилляры, сало, межклеточная жидкость, внеклеточный матрикс, склера, радужка, микроглия и многое другое — это всё соединительная ткань.

Соединительная ткань состоит  из внеклеточного матрикса и нескольких видов клеток. Клетки, относящиеся к соединительной ткани:

  • фибробласты — производят коллаген и другие вещества внеклеточного матрикса, способны делиться.
  • фиброкласты — клетки, способные поглощать и переваривать межклеточный матрикс; являются зрелыми фибробластами, к делению не способны.
  • меланоциты — сильно разветвлённые клетки, содержащие меланин, присутствуют в радужной оболочке глаз и коже (по происхождению — эктодермальные клетки, производные нервного гребня)
  • макрофаги — клетки, поглощающие болезнетворные организмы и отмершие клетки ткани (по происхождению моноциты крови)
  • эндотелиоциты — окружают кровеносные сосуды, производят внеклеточный матрикс и продуцируют гепарин. Эндотелий по большинству признаков относят к эпителию.
  • тучные клетки — продуцируют метахроматические гранулы, которые содержат гепарин и гистамин.
  • мезенхимные клетки — клетки эмбриональной соединительной ткани

Межклеточное вещество соединительных тканей (внеклеточный матрикс) содержит множество разных органических и неорганических соединений, от количества и состава которых зависит консистенция ткани. Кровь и лимфа, относимые к жидким соединительным тканям, содержат жидкое межклеточное вещество — плазму. Матрикс хрящевой ткани - гелеобразный, а матрикс кости, как и волокна сухожилий - нерастворимые твердые вещества.

 

Рыхлая волокнистая соединительная ткань, межклеточное вещество

Межклеточное вещество, или  внеклеточный матрикс (substantia intercellularis), соединительной ткани состоит из коллагеновых и эластических волокон, а также из основного (аморфного) вещества. Межклеточное вещество как у зародышей, так и у взрослых образуется, с одной стороны, путем секреции соединительнотканными клетками, а с другой — из плазмы крови, поступающей в межклеточные пространства.

В эмбриогенезе человека образование  межклеточного вещества происходит начиная с 1—2-го месяца внутриутробного развития. В течение жизни межклеточное вещество постоянно обновляется — резорбируется и восстанавливается.

Коллагеновые волокна

Коллагеновые структуры, входящие в состав соединительных тканей организмов человека и животных, являются наиболее представительными ее компонентами, образующими сложную организационную  иерархию. Основу всей группы коллагеновых структур составляет волокнистый белок  — коллаген, который определяет свойства коллагеновых структр.

Коллаген составляет более 30% общей массы белков тела, причем около 40% его находится в коже, около 50% - в тканях скелета и 10% - в  строме внутренних органов.

Коллагеновые волокна  в составе разных видов соединительной ткани определяют их прочность. В  рыхлой волокнистой соединительной ткани они располагаются в  различных направлениях в виде волнообразно изогнутых, спиралевидно скрученных, округлых или уплощенных в сечении тяжей  толщиной 1—3 мкм и более. Длина  их различна.

Внутренняя структура  коллагенового волокна определяется фибриллярным белком — коллагеном, который синтезируется на рибосомах  гранулярной эндоплазматической сети фибробластов.

Различают более 20 типов коллагена, отличающихся молекулярной организацией, органной и тканевой принадлежностью. Например:

  • коллаген I типа встречается главным образом в соединительной ткани кожи, сухожилиях, костях, роговице глаза, склере, стенке артерий и др.;
  • коллаген II типа входит в состав гиалиновых и фиброзных хрящей, стекловидного тела и роговицы глаза;
  • коллаген III типа находится в дерме кожи плода, в стенках крупных кровеносных сосудов, а также в ретикулярных волокнах (например, органов кроветворения);
  • коллаген IV типа — встречается в базальных мембранах, капсуле хрусталика (в отличие от других типов коллагена он содержит гораздо больше боковых углеводных цепей, а также гидрооксилизина и гидрооксипролина);
  • V тип коллагена присутствует в хорионе, амнионе, эндомизии, перимизии, коже, а также вокруг клеток (фибробластов, эндотелиальных, гладкомышечных), синтезирующих коллаген.

Коллаген IV и V типа не образует выраженных фибрилл.

В аминокислотном составе  белка коллагена преобладает глицин (33% - каждая третья аминокислота), а также пролин и гидроксипролин.

Молекулы коллагена имеют  длину около 280 нм и ширину 1,4 нм. Они построены из триплетов - трех полипептидных α-цепочек предшественника коллагена —проколлагена, свивающихся еще в клетке в единую тройную спираль. Проколлаген секретируется в межклеточное вещество. Проколлаген формирует первый, молекулярный, уровень организации коллагенового волокна.

Второй, надмолекулярный, уровень  — внеклеточной организации коллагенового  волокна — представляет агрегированные в длину и поперечно связанные  с помощью водородных связей молекулы тропоколлагена, образующиеся путем отщепления концевых пептидов проколлагена. Сначала образуются протофибриллы, а 5—6 протофибрилл, скрепленных между собой боковыми связями, составляют микрофибриллы толщиной около 5 нм.

При участии гликозаминогликанов, также секретируемых фибробластами, формируется третий, фибриллярный, уровень организации коллагенового волокна. Коллагеновые фибриллы представляют собой поперечно исчерченные структуры толщиной в среднем 20—100 нм. Период повторяемости темных и светлых участков 64—67 нм. Каждая молекула коллагена в параллельных рядах, как полагают, смещена относительно соседней цепи на четверть длины, что служит причиной чередования темных и светлых полос. В темных полосах под электронным микроскопом видны вторичные тонкие поперечные линии, обусловленные расположением полярных аминокислот в молекулах коллагена.

Четвертый, волоконный, уровень  организации - коллагеновое волокно, образующееся путем агрегации фибрилл, имеет толщину 1 — 10 мкм (в зависимости от топографии). В него входит различное количество фибрилл — от единичных до нескольких десятков. Волокна могут складываться в пучки (волокон) толщиной до 150 мкм.

Коллагеновые волокна  отличаются малой растяжимостью  и большой прочностью на разрыв. В воде толщина сухожилия в результате набухания увеличивается на 50%, а в разбавленных кислотах и щелочах — в 10 раз, но при этом волокно укорачивается на 30%. Способность к набуханию больше выражена у молодых волокон. При термической обработке в воде коллагеновые волокна образуют клейкое вещество (греч. kolla — клей), что и дало название этим волокнам.

Разновидностью коллагеновых волокон являются ретикулярные и преколлагеновыеволокна. Последние представляют собой начальную форму образования коллагеновых волокон в эмбриогенезе и при регенерации. В их состав входят коллаген III типа и повышенное количество углеводов, которые синтезируются ретикулярными клетками органов кроветворения. Они образуют трехмерную сеть — ретикулум, что и обусловило их название.

Эластические волокна

Наличие эластических волокон  в соединительной ткани определяет ее эластичность и растяжимость. По прочности эластические волокна  уступают коллагеновым. Форма поперечного  разреза волокон округлая и уплощенная. В рыхлой волокнистой соединительной ткани эластические волокна широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых (0,2—1 мкм), но может достигать нескольких микрометров (например, в выйной связке). В составе эластических волокон различают микрофибриллярный и аморфный компоненты.

Основой эластических волокон  является глобулярный гликопротеин — эластин, синтезируемый фибробластами и гладкими мышечными клетками. Для эластина характерно наличие двух производных аминокислот — десмозина и изодесмозина, которые участвуют в стабилизации молекулярной структуры эластина и придании ему способности к растяжению, эластичности.

Глобулярный белок эластин  составляет первый, молекулярный, уровень  организации эластического волокна.

Молекулы эластина вне  клетки соединяются в цепочки  — эластиновые протофибриллы - второй, надмолекулярный, уровень организации эластического волокна. Эластиновые протофибриллы в сочетании с гликопротеином (фибриллином) образуют микрофибриллы.

Четвертый уровень организации  эластического волокна — волоконный. Зрелые эластические волокна содержат около 90 % аморфного компонента эластических белков (эластина) в центре, а по периферии  — микрофибриллы.

Кроме зрелых эластических волокон, различают элауниновые и окситалановыеволокна. В элауниновых волокнах соотношение микрофибрилл и аморфного компонента примерно равное, а окситалановые волокна состоят только из микрофибрилл.

Коллагеновые и эластические волокна в соединительной ткани  образуют волокнистый остов с  ориентированным, неориентированным  и смешанным типами расположения волокон. Ориентированный (или оформленный) тип характеризуется параллельным расположением основной массы волокнистых  структур (например, в сухожилиях, связках, фасциях). Неориентированный (или неоформленный) тип построен из волокон, не имеющих  преимущественной ориентации (как например, дерма кожи). Смешанный тип волокнистого остова, как правило, имеет слоистое строение с чередованием направлений  расположения волокнистых элементов.

Аморфный компонент межклеточного  вещества

Клетки и волокна соединительной ткани заключены в аморфный компонент, или основное вещество (substantia fundamentalis). Эта гелеобразная субстанция представляет собой метаболическую, интегративно-буферную многокомпонентную среду, которая окружает клеточные и волокнистые структуры соединительной ткани, нервные и сосудистые элементы. В состав компонентов основного вещества входят белки плазмы крови, вода, неорганические ионы, продукты метаболизма паренхиматозных клеток, а также растворимые предшественники коллагена и эластина, протеогликаны, гликопротеины и комплексы, образованные ими. Все эти вещества находятся в постоянном движении и обновлении.

Гликозаминогликаны (ГАГ, ранее - "кислые мукополисахариды") — полисахаридные соединения, - линейные полимеры, построенные из повторяющихся дисахаридных единиц. Каждая из этих единиц содержит обычно гексуроновую кислоту и гексозамин (аминосахарид). Молекулы ГАГ содержат много гидроксильных, карбоксильных и сульфатных групп, имеющих отрицательный заряд, легко присоединяют молекулы воды и ионы, в частности Na+, и поэтому определяют гидрофильные свойства ткани. ГАГ проницаемы для кислорода и СО2, но предохраняют органы от проникновения чужеродных тел и белков. Гликозаминогликаны участвуют в формировании волокнистых структур соединительной ткани и их механических свойствах, репаративных процессах соединительной ткани, в регуляции роста и дифференцировке клеток. Среди гликозаминогликанов наиболее распространена в соединительной ткани гиалуроновая кислота, а также сульфатированные ГАГ: хондроитин-сульфаты (в хряще, коже, роговице), дерматансульфат (в коже, сухожилиях, в стенке кровеносных сосудов), кератансульфат, гепаринсульфат (в составе многих базальных мембран). Гепарин — гликозаминогликан, состоящий из глюкуроновой кислоты и гликозамина. В организме человека и животных он вырабатывается тучными клетками, является естественным противосвертывающим фактором крови.

Соединения белков с ГАГ  носят название протеогликаны (ПГ). В соединительных тканях протеогликаны образуют сложные протеогликановые комплексы, определяющие во многом свойства всего межклеточного вещества.

В основе протеогликанового комплекса лежит длинная (около 1700 нм) линейная молекула гиалуроновой кислоты, к которой присоединяются 70-100 молекул протеогликанов.

Полианионная природа ПГ позволяет им обеспечивать транспорт воды, солей, аминокислот. Пространственная организация ПГ-комплексов образует своеобразное молекулярное сито, регулирующее диффузию воды и низкомолекулярных продуктов питания и обмена. Нарушение пористости этого "фильтра", например, при возрастном отношении гиалуроновой кислоты и хондроитинсульфатов в стенках сосудов является одной из предпосылок к развитию атеросклероза.

Гликопротеины (ГП, "неколлагеновые белки") — класс соединений белков с олигосахаридами (гексозаминами, гексозами, фукозами, сиаловыми кислотами). Гликопротеины входят в состав как волокон, так и аморфного вещества. К ним относятся:

• растворимые ГП, связанные  с протеогликанами;

• ГП кальцинированных тканей;

• ГП, связанные с коллагеном (структурные ГП и ГП базальных мембран).

Гликопротеины играют большую  роль в формировании структуры межклеточного  вещества соединительной ткани и  также определяют его функциональные особенности (примеры ГП: фибронектин, хондронектин, фибриллин, ламинин и др.).

Информация о работе Специализация соединительной ткани в составе органов