Вестибулярная система

Автор работы: Пользователь скрыл имя, 10 Ноября 2012 в 14:33, реферат

Описание работы

Вестибулярная система играет наряду со зрительной и соматосенсорной системами ведущую роль в пространственной ориентировке человека. Она получает, передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.

Файлы: 1 файл

Реферат- Сенсорные системы- Вестибулярная система.doc

— 85.50 Кб (Скачать файл)

 

Сформулированы две гипотезы об организации болевого восприятия: 1) существуют специфические болевые рецепторы (свободные нервные окончания с высоким порогом реакции); 2) специфических болевых рецепторов не существует и боль возникает при сверхсильном раздражении любых рецепторов. 

 

В электрофизиологических опытах на одиночных нервных волокнах типа С обнаружено, что некоторые из них реагируют преимущественно на чрезмерные механические, а другие — на чрезмерные тепловые воздействия. При болевых раздражениях небольшие по амплитуде импульсы возникают также в нервных волокнах группы А. Соответственно разной скорости проведения импульсов в нервных волокнах групп С и А отмечается двойное ощущение боли: вначале четкое по локализации и короткое, а затем — длительное, разлитое и сильное (жгучее) чувство боли (рис. 14.20). 

 

Механизм возбуждения  рецепторов при болевых воздействиях пока не выяснен. Предполагают, что особенно значимыми являются изменения рН ткани в области нервного окончания, так как этот фактор обладает болевым эффектом при встречающейся в реальных условиях концентрации Н+. Таким образом, наиболее общей причиной возникновения боли можно считать изменение концентрации Н+ при токсическом воздействии на дыхательные ферменты или при механическом либо термическом повреждении клеточных мембран. 

 

Не исключено  также, что одной из причин длительной жгучей боли может быть выделение при повреждении клеток гистамина, протеолитических ферментов, воздействующих на глобулины межклеточной жидкости и приводящих к образованию ряда полипептидов (например, брадикинина), которые возбуждают окончания нервных волокон группы С. 

 

Адаптация болевых  рецепторов возможна: ощущение укола  от продолжающей оставаться в коже иглы быстро проходит. Однако в очень  многих случаях болевые рецепторы  не обнаруживают существенной адаптации, что делает страдания больного особенно длительными и мучительными и требует применения анальгетиков. 

 

Болевые раздражения  вызывают ряд рефлекторных соматических и вегетативных реакций. При умеренной  выраженности эти реакции имеют  приспособительное значение, но могут  привести к тяжелым патологическим эффектам, например к шоку. Среди этих реакций отмечают повышение мышечного тонуса, частоты сердечных сокращений и дыхания, повышение давления, сужение зрачков, увеличение содержания глюкозы в крови и ряд других эффектов. 

 

При ноцицептивных  воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов часты так называемые отраженные боли, проецирующиеся в определенные части кожной поверхности (зоны Захарьина—Геда). Так, при стенокардии, кроме болей в области сердца, ощущается боль в левой руке и лопатке. Наблюдаются и обратные эффекты.  

 

Например, при  локальных тактильных, температурных  и болевых раздражениях определенных «активных» точек кожной поверхности  включаются цепи рефлекторных реакций, опосредуемых центральной и автономной нервной системой. Они могут избирательно изменять кровоснабжение и трофику тех или иных органов и тканей. 

 

Методы и  механизмы иглоукалывания (акупунктуры), локальных прижиганий и тонического массажа активных точек кожи в последние десятилетия стали предметом исследования рефлексотерапии. Для уменьшения или снятия болевых ощущений в клинике используют множество специальных веществ — анальгетических, анестетических и наркотических. По локализации действия их делят на вещества местного и общего действия. Анестетические вещества местного действия (например, новокаин) блокируют возникновение и проведение болевых сигналов от рецепторов в спинной мозг или структуры ствола мозга. Анестетические вещества общего действия (например, эфир) снимают ощущение боли, блокируя передачу импульсов между нейронами коры большого мозга и ретикулярной формации мозга (погружают человека в наркотический сон). 

 

В последние годы открыта высокая аналгезирующая активность так называемых нейропептидов, большинство из которых представляет   собой   либо   гормоны   (вазопрессин,   окситоцин, АКТГ), либо их фрагменты. Часть нейропептидов являются фрагментами липотропного гормона (эндорфины). 

 

Аналгезирующее  действие нейропептидов основано на том, что они даже в минимальных  дозах (в микрограммах) меняют эффективность  передачи в синапсах с «классическими»  нейромедиаторами (ацетилхолин, норадреналин), в частности, между первым и вторым сенсорными нейронами (задние столбы спинного мозга и другие структуры). С использованием нейропептидов в настоящее время связываются надежды на эффективное лечение ряда нервно-психических заболеваний. 

 

Мышечная и  суставная рецепция (проприорецепция). В мышцах млекопитающих животных и человека содержится три типа специализированных рецепторов: первичные окончания мышечных веретен, вторичные окончания мышечных веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движений, являясь источником информации о состоянии двигательного аппарата организма. 

 

 

 

Мышечные веретена. Мышечное веретено представляет собой  небольшое продолговатое образование  длиной несколько миллиметров, шириной  десятые доли миллиметра, расположенное в толще мышцы (рис. 14.21). В разных скелетных мышцах число веретен на 1 г ткани варьирует от нескольких единиц до сотни. 

 

Каждое веретено покрыто капсулой. Внутри капсулы  находится пучок мышечных волокон. Эти волокна называют интрафузальными в отличие от всех остальных волокон мышцы, которые носят название экстрафузальных. Веретена расположены параллельно экстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — уменьшается. 

 

Различают интрафузальные волокна двух типов: 1) более толстые  и длинные с ядрами, сосредоточенными в средней, утолщенной части волокна  — ядерно-сумчатые и 2) более короткие и тонкие с ядрами, расположенными цепочкой — ядерно-цепочечные. На интрафузальных волокнах спирально расположены чувствительные окончания афферентных волокон группы Iа — так называемые первичные окончания, и чувствительные окончания афферентных волокон группы II — так называемые вторичные окончания. Импульсация, идущая от веретен по афферентным волокнам группы Iа, в спинном мозге моносинаптически возбуждает мотонейроны своей мышцы и через тормозящий интернейрон тормозит мотонейроны мышцы-антагониста (реципрокное торможение). Афферентные волокна группы II возбуждают мотонейроны мышц-сгибателей и тормозят мотонейроны мышц-разгибателей. Имеются, однако, данные, что афферентные волокна группы II, идущие от мышц-разгибателей, могут возбуждать мотонейроны своей мышцы.  

 

Веретена имеют  и эфферентную иннервацию: интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от γ-мотонейронов. Эти так называемые γ-эфферентные волокна подразделяют на динамические и статические. В расслабленной мышце импульсация, идущая от веретен, невелика. Веретена реагируют импульсацией на удлинение (растяжение) мышцы, причем у первичных окончаний частота импульсации зависит главным образом от скорости удлинения, а у вторичных — от длины мышцы (динамический и статический ответы). Активация γ-эфферентов приводит к повышению чувствительности веретен, причем динамические γ-эфференты преимущественно усиливают реакцию на скорость удлинения мышцы, а статические — на длину. Активация γ-эфферентов и без растяжения мышцы сама по себе вызывает импульсацию афферентов веретен вследствие сокращения интрафузальных мышечных волокон. Показано, что возбуждение α-мотонейронов сопровождается возбуждением γ-мотонейронов (α-γ-коактивация). Уровень возбуждения γ-системы тем выше, чем интенсивнее возбуждены α-мотонейроны данной мышцы, т. е. чем больше сила ее сокращения. Таким образом, веретена реагируют на два воздействия: периферическое — изменение длины мышцы, и  центральное — изменение уровня активации γ-системы. Поэтому реакции веретен в условиях естественной деятельности мышц довольно сложны. При растяжении пассивной мышцы наблюдается активация рецепторов веретен, вызывающая рефлекс на растяжение. При активном сокращении мышцы уменьшение ее длины оказывает на рецепторы веретена дезактивирующее действие, а возбуждение γ-мотонейронов, сопутствующее возбуждению α-мотонейронов, вызывает активацию рецепторов. Вследствие этого импульсация от рецепторов веретен во время движения зависит от нескольких факторов: соотношения длины мышцы, скорости ее укорочения и силы сокращения. 

 

Таким образом, веретена можно  рассматривать как непосредственный источник информации о длине мышцы и ее изменениях, если только мышца не возбуждена. При активном состоянии мышцы необходимо учитывать влияние γ-системы. Во время активных движений γ-мотонейроны поддерживают импульсацию веретен укорачивающейся мышцы, что дает возможность рецепторам реагировать на неравномерности движения как увеличением, так и уменьшением частоты импульсации и участвовать таким образом в коррекции движений. 

 

Сухожильные рецепторы Гольджи. Они находятся в зоне соединения мышечных волокон с сухожилием и расположены последовательно по отношению к мышечным волокнам. Сухожильные рецепторы слабо реагируют на растяжение мышцы, но возбуждаются при ее сокращении. Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы, что дает основание рассматривать сухожильные рецепторы как источник информации о силе, развиваемой мышцей. Идущие от этих рецепторов афферентные волокна относятся к группе Ib. На спинальном уровне они через интернейроны вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов мышцы-антагониста. 

 

Информация от мышечных рецепторов по восходящим путям спинного мозга  поступает в высшие отделы ЦНС, включая  кору большого мозга, и участвует  в кинестезии. 

 

Суставные рецепторы. Они  изучены меньше, чем мышечные. Известно, что суставные рецепторы реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата и в управлении им. 

 

Передача и переработка  соматосенсорной информации. Чувствительность кожи и ощущение движения обусловлены проведением в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спинно-таламическому, значительно различающимся по своим морфологическим и функциональным свойствам. Существует и третий путь — латеральный тракт Морина, близкий по ряду характеристик к лемнисковой системе.  

 

Лемнисковый путь. На всех уровнях  этот путь состоит из относительно  толстых  и  быстропроводящих  миелинизированных нервных волокон. Он передает в мозг сигналы о прикосновении к коже, давлении на нее и движениях в суставах. Отличительная особенность этого пути заключается в быстрой передаче в мозг наиболее точной информации, дифференцированной по силе и месту воздействия. Первые нейроны этого пути находятся в спинномозговом узле, их аксоны в составе задних столбов восходят к тонкому (ядро Голля) и клиновидному (ядро Бурдаха) ядрам продолговатого мозга, где сигналы передаются на вторые нейроны лемнискового пути. Часть волокон, в основном несущих сигналы от суставных рецепторов, оканчивается на мотонейронах сегментарного спинального уровня. Проприоцептивная чувствительность передается в спинном мозге также по дорсальному спинно-мозжечковому, спинно-цервикальному и некоторым другим путям. 

 

В продолговатом мозге в тонком ядре сосредоточены в основном вторые нейроны тактильной чувствительности, а в клиновидном ядре — вторые нейроны проприоцептивной чувствительности. Аксоны этих нейронов образуют медиальную петлю и после перекреста на уровне олив направляются в специфические ядра таламуса — вентробазальный ядерный комплекс. В этих ядрах концентрируются третьи нейроны лемнискового пути. Их аксоны направляются в соматосенсорную зону коры большого мозга. 

 

По мере перехода на все  более высокие уровни изменяются некоторые важные свойства нейронов лемнискового пути. Значительно увеличиваются (в продолговатом мозге в 2—30, а в коре большого мозга в 15—100 раз) размеры рецептивных полей нейронов. Ответы клеток становятся все более продолжительными: даже короткое прикосновение к коже вызывает залп импульсов, длящийся несколько секунд. Отмечено появление так называемых нейронов новизны, реагирующих на смену раздражителя. Несмотря на увеличение размеров рецептивных полей, нейроны остаются достаточно специфичными (нейроны поверхностного прикосновения, глубокого прикосновения, нейроны движения в суставах и нейроны положения или угла сгибания суставов). Для корковой части лемнискового пути характерна четкая топографическая организация, т. е. проекция кожной поверхности осуществляется в кору большого мозга по принципу «точка в точку». При этом площадь коркового представительства той или иной части тела определяется ее функциональной значимостью: формируется так называемый сенсорный гомункулюс (рис. 14.22). 

 

Удаление соматосенсорной зоны коры приводит к нарушению способности локализовать тактильные ощущения, а ее электростимуляция вызывает ощущение прикосновения, вибрации и зуда. В целом роль соматосенсорной зоны коры состоит в интегральной оценке соматосенсорных сигналов, во включении их в сферу сознания, полисенсорный синтез и в сенсорное обеспечение выработки новых двигательных навыков.  

 

Спинно-таламический путъ.Этот путь значительно отличается от лемнискового. Его первые нейроны также расположены  в спинномозговом узле, откуда они посылают в спинной мозг медленнопрово дящие немиелинизированные нервные волокна. Эти нейроны имеют большие рецептивные поля, иногда включающие значительную часть кожной поверхности. Вторые нейроны данного пути локализуются в сером веществе спинного мозга, а их аксоны в составе восходящего спинно-таламического пути направляются после перекреста на спинальном уровне в вентробазальный ядерный комплекс таламуса (дифференцированные проекции), а также в вентральные неспецифические ядра таламуса, внутреннее коленчатое тело, ядра ствола мозга и гипоталамус. Локализованные в этих ядрах третьи нейроны спинно-таламического пути лишь частично дают проекции в соматосенсорную зону коры. 

Информация о работе Вестибулярная система