Автор работы: Пользователь скрыл имя, 13 Января 2015 в 10:00, контрольная работа
Моногибридное скрещивание. Некоторые закономерности наследования были впервые установлены Г. Менделем. Он достиг успеха в своих экспериментах благодаря использованию гибридологического метода — скрещивания организмов, различающихся по каким-либо признакам, и анализа всех последующих поколений с целью установления закономерностей наследования этих признаков. Гибридологический метод и до настоящего времени остается одним из основных в генетических исследованиях.
Содержание
Моногибридное скрещивание. Некоторые закономерности наследования были впервые установлены Г. Менделем. Он достиг успеха в своих экспериментах благодаря использованию гибридологического метода — скрещивания организмов, различающихся по каким-либо признакам, и анализа всех последующих поколений с целью установления закономерностей наследования этих признаков. Гибридологический метод и до настоящего времени остается одним из основных в генетических исследованиях.
Г. Мендель усовершенствовал данный метод,
и в отличие от своих предшественников,
анализировал наследование ограниченного
количества признаков (одного, двух, трех).
При этом он выбирал признак с альтернативным (контрастирую
Моногибридное скрещивание. I и II законы Г. Менделя.
Моногибридным называется такое скрещивание, при котором родительские пары различаются по одному признаку. В своих опытах Мендель использовал горох: отцовское растение с красными цветками, а материнское — с белыми или наоборот. Родительские организмы, взятые для скрещивания, обозначают латинской буквой Р (рис. 1 и 2).
Рис. 1. Схема моногибридного скрещивания. Наследование пурпурной и белой окраски цветков у гороха: À — факторпурпурной; à — фактор белой окраски цветка
Рис. 2. Схема, иллюстрирующая поведение пары гомологичных хромосом при моногибридном скрещивании: À — фактор пурпурной окраски цветка; à — фактор белой окраски
Полученные в результате скрещивания
гибриды первого поколения F1 обладали только красными цветками.
Следовательно, признак второго родителя
(белые цветы) не проявился. Преобладание
у гибридов первого поколения признака
одного из родителей (красные цветки) Мендель
назвал доминированием, а сам
этот признак — доминантным («преобладающим»
.
Феномен преобладания одного из признаков у всех гибридов первого поколения Мендель определил как закон единообразия гибридов первого поколения (I закон Менделя). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.
При скрещивании однородных гибридов первого поколения между собой во втором поколении F2 Мендель наблюдал появление растений как с доминантными (красные цветки), так и с рецессивными (белые цветки) признаками. Эта закономерность носит название расщепления. И оно оказывалось не случайным, а строго закономерным: 3/4 от общего числа гибридов второго поколения F2 имеют красные цветки, а 1/4 - белые. Иными словами, соотношение числа растений с доминантными и рецессивными признаками составляет 3 : 1. Из этого следует, что рецессивный признак у гибридов F 1 не исчез, а был подавлен и проявился во втором поколении [4, с.91].
Расщепление во втором поколении гибридов было названо Менделем законом расщепления гибридов второго поколения (II закон Менделя). Формулируется следующим образом: при скрещивании гетерозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.
Пытаясь дать объяснение выявленным закономерностям, автор теории высказал ряд предположений о механизмах наследования признаков:
- поскольку у гибридов F1 проявляется лишь один признак (доминантный), а второй (рецессивный) отсутствует, но вновь проявляется у гибридов F2, то, следовательно, наследуются не сами признаки, а наследственные факторы (какие-то материальные частицы), их определяющие;
- эти факторы являются постоянными, присутствуют в организме попарно и передаются из поколения в поколение через гаметы, причем в половую клетку попадает лишь один наследственный фактор из пары;
- при слиянии половых клеток в новом организме вновь оказывается пара наследственных факторов (по одному от отцовского и материнского организмов);
- наследственные факторы неравноценны по своей «силе», более «сильный» доминантный подавляет более «слабый» рецессивный (чем и объясняется единообразие гибридов первого поколения F1);
- в ходе оплодотворения могут
сливаться гаметы, несущие либо одинаковые
факторы (только доминантные или только
рецессивные), либо разные (одна гамета
содержит доминантный, другая - рецессивный).
В первом случае у нового организма будет
присутствовать пара одинаковых факторов.
Мендель назвал такие организмы гомозиготными (либо
- сочетание доминантных и рецессивных факторов в строго определенных комбинациях обусловливает расщепление признаков в соотношении 3 : 1 у гибридов второго поколения F2.
Теперь вместо слова «фактор» используется «ген». Все предположения, высказанные Менделем о механизме наследования признаков у организмов, получили в ходе развития науки полное подтверждение.
Менделем была предложена и система записи результатов скрещивания с использованием буквенной символики, которой пользуются в генетике до сих пор. Парные наследственные факторы (т. е. аллельные гены) обозначаются одной буквой, при этом доминантный ген — прописной (например, А), а рецессивный — строчной (а) [3, с.158].
Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализирующее скрещивание. Для этого данный организм скрещивают с рецессивным гомозиготным по данной аллели. Возможны два варианта результатов скрещивания:
Если в результате скрещивания получается единообразие гибридов первого поколения, то анализируемая особь является гомозиготной, а если в F1, произойдет расщепление признаков 1:1, то — гетерозиготной.
Рассмотрим результаты опытов по моногибридному скрещиванию в виде схемы на основе системы записи, предложенной Менделем.
Уже при жизни ученого в работах исследователей указывалось на то, что закономерности наследования признаков при моногибридном скрещивании подчас отличаются от установленных им. Например, при скрещивании растений «ночной красавицы» с красными и белыми цветками все гибриды F1 имеют розовые цветки. А во втором поколении гибридов F2наблюдается расщепление признака в соотношении 1 : 2 : 1 (растения с красными, розовыми и белыми цветками) (рис. 3).
Рис. 3. Схема неполного доминирования
В этом случае наблюдается промежуточный характер наследования, т. е. у гетерозиготных гибридов (Rr) не проявляется ни доминантный признак (красные цветки), ни рецессивный (белые цветки). Эта закономерность наследования получила название неполного доминирования [3, с.159].
Кроме данного феномена были выявлены и другие закономерности наследования, отличные от законов Менделя. Следовательно, они не являются абсолютными, а имеют ограниченный характер.
В современной генетике существуют понятия менделирующие признаки (наследующиеся по законам Менделя) и неменделирующие (наследующиеся по иным законам). Менделирующих признаков у всех организмов большое число. Немало их и у человека (табл. 1 и рис. 4).
Таблица 1
Некоторые менделирующие признаки у человека
Доминантные признаки Рецессивные признаки | |
Волосы: темные вьющиеся не рыжие |
Волосы: светлые прямые рыжие |
Глаза: карие большие |
Глаза: голубые маленькие |
Близорукость |
Нормальное зрение |
Ресницы длинные |
Ресницы короткие |
Нос с горбинкой |
Прямой нос |
Свободная мочка уха |
Приросшая мочка уха |
Широкая щель между резцами |
Узкая щель между резцами или ее отсутствие |
Полные губы |
Тонкие губы |
Наличие веснушек |
Отсутствие веснушек |
Шестипалость |
Нормальное строение конечностей |
Лучшее владение правой рукой |
Лучшее владение левой рукой |
Наличие пигмента |
Альбинизм |
Положительный резус-фактор |
Отрицательный резус-фактор |
Рис. 4. Некоторые наследственные признаки человека: а — ямочки на щеках (доминантный признак); б— приросшая мочка уха (рецессивный признак); в — рост волос по средней линии лба (доминантный признак); г— способность загибать язык назад (доминантный признак); л — расплющенный большой палец (доминантный признак); е— способность свертывать язык трубочкой (доминантный признак);ж —монголоидный разрез глаз(доминантный признак); з — альбинизм (рецессивный признак); и — зрачок, заходящий на радужную оболочку (сцепленный с полом рецессивный признак)
Применяемые Менделем приемы легли в основу нового метода изучения наследования — гибридологического [3, с.159].
Гибридологический анализ — это постановка системы скрещиваний, позволяющих выявить закономерности наследования признаков.
Условия проведения гибридологического анализа:
1) родительские особи должны быть одного вида и размножаться половым способом (иначе скрещивание просто невозможно);
2) родительские особи должны быть гомозиготными по изучаемым признакам;
3) родительские особи должны различаться по изучаемым признакам;
4) родительские особи скрещивают между собой один раз для получения гибридов первого поколения F1, которые затем скрещивают между собой для получения гибридов второго поколения F2;
5) необходимо проведение строгого учета числа особей первого и второго поколения, имеющих изучаемый признак [3, с.160].
Биотические — связи между живыми организмами в экосистеме. Основной вид биотических связей — пищевые связи (цепи питания) [1, с.317].
Звенья пищевой цепи:
— производители — растения и некоторые бактерии, создающие органические вещества из неорганических;
— потребители — животные, некоторые растения и бактерии, питающиеся готовыми органическими веществами;
— разрушители — грибы и некоторые бактерии, разрушающие органические вещества до неорганических.
Внутривидовые отношения — биотические связи между особями одного вида. Примеры: конкуренция между самцами из-за самки, борьба особей из-за лидерства в группе, забота родителей о потомстве, охрана самцами молодых животных и самок.
Межвидовые отношения — биотические связи между особями разных видов (хищничество, конкуренция, паразитизм, симбиоз).
Хищничество — прямые пищевые связи между организмами, при которых одни организмы уничтожаются другими организмами. Примеры: поедание лисицей зайцев, синицей — гусениц.
Конкуренция — тип взаимоотношений, возникающий между видами со сходными экологическими потребностями из-за пищи, территории и др. Пример: конкуренция между лосями и зубрами, обитающими в одном лесу, из-за пищи. Отрицательное влияние конкуренции на оба конкурирующих вида (например, уменьшение численности лосей и зубров вследствие недостатка корма).
Паразитизм — форма межвидовых отношений, при которых одни организмы существуют за счет других, питаясь их кровью, тканями или переваренной пищей. Многократное использование паразитом организма хозяина. Примеры паразитизма: гриб-трутовик и дерево, собака и клещ, паразитические черви и человек.
Симбиоз — тип межвидовых отношений, при котором оба организма получают взаимную пользу. Примеры симбиоза: рак-отшельник и актиния, клубеньковые растения и бактерии, шляпочные грибы и деревья, лишайники (симбиоз гриба и водоросли).
Роль биотических связей в экосистеме. Взаимосвязь организмов — производителей, потребителей и разрушителей в экосистеме — основа круговорота веществ и превращений энергии. Цепи питания — пути передачи веществ и энергии. Пример: растения — растительноядное животное (заяц) — хищник (волк).
Звенья круговорота веществ: поглощение производителями из окружающей среды неорганических веществ и создание ими органических веществ с использованием энергии солнечного света; потребление органических веществ и заключенной в них энергии организмами-потребителями (растительноядными животными, хищниками, паразитами); разрушение органических веществ до минеральных с освобождением заключенной в них энергии организмами-разрушителями (бактериями, грибами) [1, с.318].
В начале XIX в. понятие (не термин) «биосфера» было введено в науку великим французским естествоиспытателем Ж. Б. Ламарком (1744-1829). Термин «биосфера» для определения земной оболочки, занятой жизнью, одновременно с терминами «гидросфера» и «литосфера» в конце XIX в. утвердил в научном обиходе знаменитый австрийский геолог Э. Зюсс (1831-1914). Создав новый термин, Э. Зюсс не дал ему научного определения. Автор современного учения о биосфере В. И. Вернадский стал употреблять термин «биосфера» с 1911 г., но впервые дал его определение в 1923 г. и с тех пор не менее 15 раз его уточнял, подчёркивая, что биосфера это «особая охваченная жизнью оболочка» Земли, область распространения живого вещества на планете [5, с.84].
Биосферой В. И. Вернадский назвал «ту область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается или подвергалась воздействию живых организмов» (верхняя часть литосферы, гидро- и тропосфера). Значение организмов обусловлено их большим разнообразием, повсеместным распространением, длительностью существования в истории Земли, избирательным характером биохимической деятельности и исключительно высокой химической активностью по сравнению с компонентами природы [2, с.78].
Информация о работе Закономерности наследственности, установленные Г. Менделем