Эволюция онтогенеза, органов и функций

Автор работы: Пользователь скрыл имя, 03 Ноября 2012 в 11:22, лекция

Описание работы

Онтогенез - це індивідуальний розвиток організму, в ході якого відбувається перетворення його морфофізіологічних, фізіолого-біохімічних та цитогенетичних ознак.
Онтогенез – это индивидуальное развитие организма, в ходе которого происходит преобразование его морфофизиологических, физиолого-биохимических и цитогенетических признаков.

Файлы: 1 файл

Тема 12.doc

— 92.50 Кб (Скачать файл)

в) гетеротопии – сдвиги места закладки органов;

г) гетерохронии – сдвиги времени закладки органов.

Путем архаллаксисов могут возникать  ароморфозы (зародышевые листки, хорда, нервная трубка и головной мозг у позвоночных, шерстный покров у млекопитающих), идиоадаптации (изменение числа зубов, числа позвонков), рудименты (отрицательные архаллаксисы).

Девиации – изменения органов на средних этапах онтогенеза. Девиации встречаются чаще, чем архаллаксисы. Путем девиации также могут возникать и ароморфозы, и идиоадаптации, и редуцированные органы.

Примеры девиаций:

– Возникновение среднего уха за счет преобразования рудиментарной  жаберной щели (брызгальца).

– Возникновение сложных зубов млекопитающих.

– Видоизменение побегов у растений (клубни и луковицы)

– Редукция спинной мускулатуры  у черепах.

– Преобразования уплотненного слоя эпидермиса:

– роговые щитки у большинства  рептилий

– перья у птиц.

Анаболии – изменения онтогенеза на поздних стадиях развития. Представляют собой надставки к уже имеющимся стадиям. Биогенетический закон выполняется в целом лишь при анаболиях.

Анаболии встречаются еще чаще, чем девиации. Путем анаболии также  могут возникать и ароморфозы, и идиоадаптации, и редуцированные органы.

Примеры: формирование четырехкамерного сердца у теплокровных позвоночных, изменение формы листьев, редукция пальцев у копытных, редукция хвоста у головастиков. 

 

Автономизация онтогенеза

Автономизация онтогенеза – это процесс повышения независимости онтогенеза от условий внешней среды: экзогенные факторы развития замещаются эндогенными. Например, у хвостатых амфибий метаморфоз определяется, в значительной мере, факторами внешней среды (метаморфоз можно задержать понижением температуры), а у бесхвостых – изменением концентрации тироксина (гормона щитовидной железы), которая повышается под воздействием тиреотропного гормона гипофиза.

Автономизация онтогенеза тесно связана с канализацией развития и совершенствованием механизмов гомеореза.

Автономизация онтогенеза базируется на системе корреляций и координаций. Учение о корреляциях и координациях разработал И.И. Шмальгаузен

Корреляции – это взаимозависимости между частями развивающегося организма, которые обеспечивают его устойчивое развитие.

Типы онтогенетических корреляций:

1. Геномные – обусловливают целостность генотипа.

Достигаются с помощью диплоидности, доминирования, плейотропного действия генов и наличия полигенных систем с участием генов-модификаторов. Известны гены, прямо отвечающие за гистогенез и морфогенез.

2. Морфогенетические – обусловлены эмбриональной индукцией и нейро-гуморальной регуляцией целостности организма.

3. Эргонтические – фенотипические корреляции, обусловленные модифицирующим влиянием среды.

В ходе эволюции происходит изменение корреляций таким образом, что формируются новые координации – согласованные изменения между частями организма с точки зрения филогенеза. Координации обеспечивают формирование адаптивных комплексов.

Типы филогенетических координаций:

1. Биологические координации – адаптивный ответ на изменения среды. Биологические координации устанавливаются через функциональную деятельность организма. Примеры: удлинение тела и редукция конечностей у змей, змееобразных ящериц и амфибий. Биологические координации ведут к прогрессирующей специализации, но они могут быть разорваны с приобретением принципиально нового признака. Например, появление плавательного пузыря разрывает координацию между формой тела, формой хвоста и удельным весом тела хрящевых рыб.

2. Динамические координации – координации между взаимосвязанными органами. Например, у млекопитающих хорошо развиты и орган обоняния, и обонятельные доли переднего мозга. Динамические координации повышают степень канализации онтогенеза и филогенеза и выражают функциональную обусловленность (коадаптацию) органов и систем органов.

3. Топографические координации – выражаются в закономерных изменениях пространственных соотношений между органами, не связанными непосредственной функциональной зависимостью. Пример крупной топографической координации: взаимное расположение нервной трубки, осевого скелета, пищеварительной трубки и сердца у хордовых. Топографические координации определяют общий план строения группы организмов.

Таким образом, автономизация онтогенеза тесно связана с повышением уровня организации группы организмов, а корреляции между органами в онтогенезе тесно связаны с координациями между органами в филогенезе.  

 

Эмбрионизация онтогенеза

Процесс автономизации тесно связан с эмбрионизацией онтогенеза.

Эмбрионизация – возникновение  в ходе эволюции способности проходить  значительную часть зародышевого развития под защитой материнского организма  или зародышевых оболочек.

Эмбрионизация онтогенеза у животных

У животных эмбрионизация онтогенеза выражается в переходе к яйцекладному и внутриутробному типам онтогенеза. Эволюционная смена типов эмбрионального развития повышает независимость гисто- и морфогенеза от внешней среды, способствует автономизации онтогенеза и возможности выхода в новую адаптивную зону.

Эмбрионизация онтогенеза у растений

У растений эмбрионизация онтогенеза выражается в следующих преобразованиях:

1. Редукция гаметофита: листостебельный  у мхов → заросток папоротников  → эндосперм голосеменных →  зародышевый мешок покрытосеменных.

2. Формирование семени с семенной кожурой и запасом питательных веществ в виде эндосперма и/или специализированных семядолей.

3. Формирование плода (ароморфоз)  и плодоподобных структур (идиоадаптации). 

 

3. Филогенетические  преобразования органов и функций

Каждый орган неразрывно связан с выполнением определенных функций. Поэтому филогенетические (эволюционные) преобразования органов и функций представляют собой единый процесс.

Функциональные изменения органов  основаны на их изначальной мультифункциональности. Например, крылья летучих мышей выполняют функции полета, терморегуляции, осязания, синтеза витамина D, улавливания добычи.

Различают следующие модусы филогенетических преобразований органов и функций.

Количественные функциональные изменения органов

1. Расширение функций. Например, уши у слона служит дополнительно органом терморегуляции; кровеносная система выполняет функцию терморегуляции и защитную функцию.

2. Сужение функций. Например, конечности лошади утратили лазающую и хватательные функции. Сужение функций часто связано с их иммобилизацией – утрате функций в связи с редукцией органа.

3. Интенсификация функций. Например, увеличение переднего мозга привело к формированию второй сигнальной системы; развитие шерстного покрова обеспечило и терморегуляцию, и защиту от физико-химических повреждений. Интенсификация функций часто связана с их активацией – преобразованием пассивного органа в активный. Примеры: втяжные когти кошачьих, подвижные челюсти змей, использование метаболической воды обитателями степей и пустынь. 

 

Качественные функциональные изменения органов:

1. Смена функций при специализации органа (Дорн, 1875) – эволюционное преобразование органа, при котором одна из второстепенных функций становится более важной, чем прежняя главная функция. Например, подъязычная дуга висцерального черепа позвоночных последовательно сменила следующие функции: опорно-защитная функция второй пары жаберных дуг у предков рыб, участие в образовании брызгальца у низших рыб (скаты, осетровые, лопатоносы), опора для жаберной крышки у костных рыб, передача звуковых колебаний и глотание у наземных позвоночных. Передние конечности позвоночных преобразуются и в ласты, и в крылья. У цветковых растений лепестки – или видоизмененные трофофиллы, или микроспорофиллы. Возможность смены функций связана с механизмами преадаптации.

2. Разделение функций. Например, конечности членистоногих выполняют функции хождения, захвата и измельчения пищи, дыхания и другие; сплошной хвостовой плавник у водных позвоночных дифференцируется на рулевые спинной и анальный плавник и на двигательный хвостовой плавник.

3. Фиксация функций. Например, переход от стопохождения к пальцехождению в ходе естественного отбора и замещения ненаследственных изменений наследственными (данный модус не следует путать с ламарковским «законом упражнения и неупражнения»).  

 

Субституция

В ходе эволюции часто наблюдается  субституция – замещение одного органа другим или передача функций  от одного органа к другому (от лат. substituo – ставлю вместо, назначаю взамен).

Различают субституцию органов и субституцию функций.

Субституция органов, или гомотопная субституция – замещение в ходе эволюции одного органа другим, занимающим сходное положение в организме и выполняющим биологически равноценную функцию. В этом случае происходит редукция замещаемого органа и прогрессивное развитие замещающего. Так, у хордовых осевой скелет – хорда – замещается сначала хрящевым, затем костным позвоночником. В ряде случаев субституция приводит к появлению аналогичных органов, например, у растений листья (фотосинтезирующие органы) замещаются филлодиями (уплощенными черешками) или филлокладиями (уплощенными стеблями). Термин «субституция органов» введён Н. Клейненбергом (1886).

Субституция функций, или гетеротопная субституция – утрата в ходе эволюции одной из функций (при этом выполнявший её орган редуцируется) и замещение её другой, биологически равноценной (выполняемой другим органом). Так, функция перемещения тела в пространстве при помощи ног (хождение) у змей замещена перемещением при помощи изгибаний позвоночника (ползание); дыхание с помощью жабр (извлечение кислорода из воды) у наземных позвоночных замещено газообменом в лёгких. Термин «субституция функций» введён А. Н. Северцовым (1931).

Субституция тесно связана с принципом компенсации и с редукцией органов. Например, у птиц редукция зубов связана с развитием мускулистого желудка.  

 

 

  

 

© Афонин Алексей Алексеевич 

Доктор с.-х. наук, профессор  кафедры зоологии и анатомии Брянского  государственного университета

Зав. лабораторией популяционной цитогенетики НИИ ФиПИ БГУ  

 

главная страница сайта  ОБЩАЯ И ТЕОРЕТИЧЕСКАЯ БИОЛОГИЯ http://afonin-59-bio.narod.ru

e-mail: afonin.salix@gmail.com  

 

дополнительные web-ресурсы

http://afonin-59-salix.narod.ru

http://darwin200.narod.ru  

 


Информация о работе Эволюция онтогенеза, органов и функций