Понятие о морфогенезе. Основные законы биологического развития

Автор работы: Пользователь скрыл имя, 15 Сентября 2015 в 15:35, реферат

Описание работы

Морфогенез, формообразование, возникновение новых форм и структур, как в онтогенезе, так и в филогенезе организмов. У животных в ходе индивидуального развития возникают субклеточные, клеточные и многоклеточные структуры. В классической эмбриологии под морфогенезом обычно понимают возникновение многоклеточных структур. Они образуются благодаря размножению, изменениям формы и перемещениям клеток развивающегося организма. Морфогенез определён генетически, но осуществляется благодаря эпигенетическим взаимозависимостям клеток и их комплексов.

Содержание работы

Введение…………………………………………………………………………………3
1 Морфогенез…………………………………………………………………………….5
1.1 История………………………………………………………………………………5
1.2 Морфогенез……………………………………………………………………………5
1.3 Молекулярный уровень……………………………………………………………10
1.4 Клеточный уровень………………………………………………………………..11
2 Основные законы биологического развития………………………………………12
2.1 Законы биологического развития………………………………………………...12
Заключение……………………………………………………………………………17
Список использованной литературы……………………………………………….18

Файлы: 1 файл

Гистология.doc

— 110.50 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФГБОУ ВПО «Волгоградский государственный технический университет»

Факультет технологии пищевых производств

Кафедра технологии пищевых производств

 

 

 

СЕМЕСТРОВАЯ РАБОТА

по дисциплине «Анатомия и гистология сельскохозяйственных животных»

на тему:

«ПОНЯТИЕ О МОРФОГЕНЕЗЕ. ОСНОВНЫЕ ЗАКОНЫ БИОЛОГИЧЕСКОГО РАЗВИТИЯ»

 

 

Выполнила:

студентка группы ПП-151

 Проверил: д-р биол. наук,

профессор кафедры ТПП

Храмова В.Н.

 

 

 

Волгоград, 2014

Содержание

Введение…………………………………………………………………………………3

1 Морфогенез…………………………………………………………………………….5

1.1 История………………………………………………………………………………5

1.2 Морфогенез……………………………………………………………………………5

1.3 Молекулярный уровень……………………………………………………………10

1.4 Клеточный уровень………………………………………………………………..11

2 Основные законы биологического развития………………………………………12

2.1 Законы биологического развития………………………………………………...12

Заключение……………………………………………………………………………17

Список использованной литературы……………………………………………….18

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Морфогенез, формообразование, возникновение новых форм и структур, как в онтогенезе, так и в филогенезе организмов. У животных в ходе индивидуального развития возникают субклеточные, клеточные и многоклеточные структуры. В классической эмбриологии под морфогенезом обычно понимают возникновение многоклеточных структур. Они образуются благодаря размножению, изменениям формы и перемещениям клеток развивающегося организма. Морфогенез определён генетически, но осуществляется благодаря эпигенетическим взаимозависимостям клеток и их комплексов.[3] Формообразование путём клеточного размножения характерно для постэмбрионального развития животных, морфогенез посредством изменений формы и движений клеток — гл. обр. для их эмбриогенеза . В морфогенезе решающее значение имеют контактные, в меньшей степени — дистантные взаимодействия клеток, обусловливающие морфогенетические корреляции и контролируемые влияния со стороны более широкого клеточного окружения (целого зачатка или зародыша). Это обеспечивает характерное для морфогенеза сочетание точности с высокими способностями к регуляции искусственных, или естественных нарушений. Нерегулируемые искажения морфогенеза приводят к аномалиям развития. В процессе эволюции при наследуемых изменениях генома видоизменяются сложившиеся в организме морфогенетические корреляции. Особи с изменённой структурой подвергаются действию естественного отбора и при благоприятных условиях могут сохраниться, дав начало потомкам с повой структурой.

Тема данной работы актуальна, так как изучение морфогенеза — одна из основных проблем комплекса морфологических дисциплин, биологии развития и генетики, а так же важно знать все основные законы развития организма.

Исследование морфогенеза имеют целью понять процессы, которые управляют пространственным расположением клеток на протяжении эмбрионального развития организма, которые дают начало характерным формам тканей и органов и анатомии тела.

Каждый живой организм, несмотря на многообразие своих форм, и приспособлений к условиям внешней среды, в своем развитии подчинен строго определенным законам.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Морфогенез

1.1 История

Некоторые из самых ранних идей того, как физические процессы и математические ограничения влияют на биологический рост, были высказаны Д’Арси Вентвортом Томпсоном и Аланом Тьюрингом.[5] В 1952 году Тьюринг опубликовал работу под названием «Химические основы морфогенеза», где впервые математически описывается процесс самоорганизации материи. Эти работы постулировали наличие химических сигналов и физико-химических процессов таких как диффузия, активация и деактивация, в процессе роста клеток и организмов. Более полное понимание механизмов морфогенеза пришло с изучением ДНК, молекулярной биологии и биохимии, молекулярных механизмов регуляции работы генов.

1.2 Морфогенез

Морфогенез — это процесс возникновения новых структур и изменения их формы в ходе индивидуального развития организмов. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состояние и по большей части необратимым.[1] Главным свойством ациклических процессов является их пространственно-временная организация. Морфогенез на надклеточном уровне начинается с гастру-ляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологические перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого их них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве протекает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы.

Морфогенез связан с очень многими процессами, начиная с прогенеза. Поляризация яйцеклетки, овоплазматическая сегрегация после оплодотворения, закономерно ориентированные деления дробления, движения клеточных масс в ходе гаструляции и закладок различных органов, изменения пропорций тела — все это процессы, имеющие большое значение для морфогенеза. Помимо надклеточного уровня к морфопроцессам относятся такие процессы, которые протекают на субклеточном и молекулярном уровнях. Это изменения формы и строения отдельных клеток, распад и воссоздание молекул и крупных молекулярных комплексов, изменение конформации молекул.

Таким образом, морфогенез представляет собой многоуровневый динамический процесс. В настоящее время уже многое известно о тех структурных превращениях, которые происходят на внутриклеточном и межклеточном уровнях и которые преобразуют химическую энергию клеток в механическую, т.е. об элементарных движущих силах морфогенеза.

В расшифровке всех этих внутриуровневых и межуровневых процессов большую роль сыграл каузально-аналитический (от лат. causa — причина) подход. Данный отрезок развития считают объясненным, если его удалось представить в виде однозначной последовательности причин и следствий. В этом аспекте одним из первостепенных является вопрос о том, содержится ли в геноме данного вида или в генотипе зиготы информация о конкретных морфологических процессах. Очевидно, что в геноме данного вида заложена информация о конечном результате, т.е. развитии особи определенного вида. Очевидно также, что в генотипе зиготы содержатся определенные аллели родителей, обладающие возможностью реализоваться в определенные признаки. Но из каких именно клеток, в каком месте и в какой конкретно форме разовьется тот или иной орган, в генотипе не заложен о.

Это утверждение вытекает из всех сведений о явлениях эмбриональной регуляции, которые показывают, что конкретные пути морфогенеза как в эксперименте, так и в нормальном развитии могут варьировать. Гены, лишенные однозначного морфогенетического смысла, приобретают его, однако, в системе целостного развивающегося организма ив контексте определенных, структурно устойчивых схем морфогенеза.

Клетки и клеточные комплексы совершают закономерные спонтанные, не порождаемые внешними силами, макроскопические морфогенетические движения. При изменении положения, уменьшении или увеличении количества бластомеров и при пересадке эмбриональных индукторов в нетипичное место нередко достигается нормальный результат. Это позволяет рассматривать морфогенез как самоорганизующийся процесс образования структур из исходно однородного состояния, что является неотъемлемым свойством самоорганизующихся систем, обладающих свойством целостности.

Одновременно с взаимосвязью всех частей развивающегося эмбриона возникают относительно автономизированные биологические системы, способные продолжать развитие в условиях изоляции от целого организма. Если зачаток бедра куриного зародыша культивировать в искусственной среде, он продолжает развиваться в прежнем направлении. Глаз крысы, изолированный на стадии 14—17 сут, продолжает автоматически развиваться, хотя дефектно и медленнее. Через 21 сут глаз в культуре тканей приобретает ту степень сложности структуры, которую нормально он уже имеет на 8-е сутки после рождения крысы. Для объяснения всех этих явлений каузально-аналитический подход неприменим. На вооружение взята физико-математическая теория самоорганизации неравновесных природных систем, как биологических, так и небиологических.

В настоящее время разрабатывают несколько подходов к проблеме регуляции и контроля морфогенеза.

Концепция физиологических градиентов, предложенная в начале XX в. американским ученым Ч. Чайльдом, заключается в том, что у многих животных обнаруживаются градиенты интенсивности обмена веществ и совпадающие с ними градиенты повреждаемости тканей. Эти градиенты обычно снижаются от переднего полюса животного к заднему. Они определяют пространственное расположение морфогенеза и цитодифференцировки. Возникновение самих градиентов определяется гетерогенностью внешней среды, например питательных веществ, концентрации кислорода или силы тяжести. Любое из условий или их совокупность могут вызвать первичный физиологический градиент в яйцеклетке. Затем возможно возникновение вторичного градиента под некоторым углом к первому. Система из двух градиентов (или более) создает определенную координатную систему. Функцией координаты является судьба клетки.

Ч. Чайльд открыл также, что верхний конец градиента является доминирующим. Выделяя некоторые факторы, он подавлял развитие таких же структур из других клеток зародыша. Наряду с подтверждающими имеются явления, которые не укладываются в упрощенную схему, и поэтому концепцию Чайльда нельзя рассматривать как универсальное объяснение пространственной организации развития.

Более современной является концепция позиционной информации, по которой клетка как бы оценивает свое местоположение в координатной системе зачатка органа, а затем дифференцируется в соответствии с этим положением. По мнению современного английского биолога Л. Вольперта, положение клетки определяется концентрацией некоторых веществ, расположенных вдоль оси зародыша по определенному градиенту. Ответ клетки на свое местоположение зависит от генома и всей предыдущей истории ее развития. По мнению других исследователей, позиционная информация есть функция полярных координат клетки. Существует также мнение о том, что градиенты представляют собой стойкие следы периодических процессов, распространяющихся вдоль развивающегося зачатка. Концепция позиционной информации позволяет формально интерпретировать некоторые закономерности онтогенетического развития, но она очень далека от общей теории целостности.

Концепция морфогенетических полей, базирующаяся на предположении о дистантных либо контактных взаимодействиях между клетками зародыша, рассматривает эмбриональное формообразование как самоорганизующийся и самоконтролируемый процесс. Предыдущая форма зачатка определяет характерные черты его последующей формы. Кроме того, форма и структура зачатка способны оказать обратное действие на биохимические процессы в его клетках. Наиболее последовательно эту концепцию разрабатывал в 20—30-х гг. отечественный биолог А. Г. Гурвич, предложивший впервые в мировой литературе математические модели формообразования. Он, например, моделировал переход эмбрионального головного мозга из стадии одного пузыря в стадию трех пузырей.

Модель исходила из гипотезы об отталкивающих взаимодействиях между противоположными стенками зачатка. На рисунке 1. эти взаимодействия отображены тремя векторами (А, А1, А2). Гурвич впервые указал также на важную роль неравновесных надмолекулярных структур, характер и функционирование которых определяются приложенными к ним векторами поля. В последние годы К. Уоддингтон создал более обобщенную концепцию морфогенетического векторного поля, включающую не только формообразование, но и любые изменения развивающихся систем.

Рисунок 1-Моделирование морфогенеза головного мозга зародыша курицы

Близкие идеи лежат в основе концепции диссипативных структур. Диссипативными (от лат. dissipatio — рассеяние) называют энергетически открытые, термодинамически неравновесные биологические и небиологические системы, в которых часть энергии, поступающей в них извне, рассеивается. В настоящее время показано, что в сильно неравновесных условиях, т.е. при достаточно сильных потоках вещества и энергии, системы могут самопроизвольно и устойчиво развиваться, дифференцироваться. В таких условиях возможны и обязательны нарушения однозначных причинно-следственных связей и проявления эмбриональной регуляции и других явлений. Примерами диссипативных небиологических систем являются химическая реакция Белоусова — Жаботинского, а также математическая модель абстрактного физико-химического процесса, предложенная английским математиком А. Тьюрингом.

На пути моделирования морфогенеза как самоорганизующегося процесса сделаны первые шаги, а все перечисленные концепции целостности развития носят пока фрагментарный характер, освещая то одну, то другую сторону.

1.3 Молекулярный уровень

Вещества, оказывающие влияние на морфогенез, называют морфогенами.

Важный класс морфогенов — факторы транскрипции, определяющие судьбу клетки путём взаимодействия с ДНК. Факторы транскрипции катализируют транскрипцию определенных генов, участвующих в клеточной дифференцировке, а также генов других факторов транскрипции. Таким образом, происходит регуляция экспрессии генов по каскадному принципу.

Другой класс морфогенов — вещества, контролирующие межклеточные контакты, в том числе агрегацию клеток. Например, во время гаструляции некоторые клетки зародыша утрачивают межклеточные контакты, становятся способными к миграции, занимают новое положение в эмбрионе, где они могут снова образовать межклеточные контакты и сформировать ткани и органы.

1.4 Клеточный уровень

Морфогенез возникает из-за изменений в клеточной структуре или из-за взаимодействий клеток в тканях. По современным представлениям связующим звеном контроля и регуляции между клеткой и целостным организмом является ниша стволовой клетки. Клетки некоторых типов сортируются. Это означает, что клетки собираются в кластеры так, чтобы максимизировать контакт с клетками того же типа (см. агрегация клеток). Два хорошо известных типа таких клеток — эпителиальные и мезенхимальные. В процессе эмбрионального развития происходят несколько событий клеточной дифференцировки, когда мезенхимальные клетки становятся эпителиальными и наоборот (см. Эпителиально-мезенхимальный переход). При этом клетки могут мигрировать из эпителия и ассоциироваться с другими подобными клетками в новом месте.

Информация о работе Понятие о морфогенезе. Основные законы биологического развития