Реакция организма на гипоксию

Автор работы: Пользователь скрыл имя, 22 Июня 2014 в 12:26, курсовая работа

Описание работы

Для адекватного энергообеспечения процессов жизнедеятельности необходимо, чтобы для каждой структуры эффективность биологического окисления соответствовала уровню ее функциональной активности. В нормальных условиях такое соответствие обеспечивается координированной деятельностью многочисленных механизмов, обеспечивающих транспорт необходимого количества субстратов биологического окисления и кислорода к месту их использования, эффективную утилизацию этих субстратов и удаление конечного продукта окисления - двуокиси углерода. Если в силу каких-либо причин указанное соответствие нарушается, возникает абсолютная или относительная недостаточность биологического окисления -- гипоксия. Она бывает причиной самых разнообразных структурно-функциональных нарушений. Почти при любом заболевании имеет место гипоксический компонент.

Содержание работы

Введение
I. Основные типы гипоксии и их происхождение классификация основных типов
II. Компенсаторно-приспособительные реакции при гипоксии
III. Физиологические процессы в организме при гипоксии
IV. Заключение
Список литературы

Файлы: 1 файл

реакция организма на гипоксию.docx

— 169.53 Кб (Скачать файл)

Смешанный тип гипоксии наблюдается наиболее часто, представляя собой сочетание двух или более основных типов гипоксии. Механизм смешанных форм гипоксии связан с тем, что первично возникающая гипоксия любого типа по достижении определенной степени неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки в организм кислорода и его утилизации. Так, при значительной степени гипоксии, вызванной недостаточностью внешнего дыхания, страдает функция кардиовазомоторного центра, проводящей системы сердца, снижается сократительная способность миокарда, нарушается проницаемость сосудистых стенок, происходит дезорганизация мембранных структур клеток, нарушается синтез дыхательных ферментов и т.д. Это приводит к нарушениям кровоснабжения тканей и снижению усвоения ими кислорода, в результате чего к первичному респираторному типу гипоксии присоединяется циркуляторный и тканевый. Подобные явления наблюдаются при травматических и других видах шока, коматозных состояниях различного происхождения и т.д. Практически любое тяжелое гипоксическое состояние имеет смешанный характер.

Изменения паренхиматозных органов при гипоксии проявляются исчезновением гликогена, возникновением различного вида дистрофий, некроза. Резко нарушается структура ядра, митохондрий, гранулярного и агранулярного ретикулума. В межклеточном пространстве обнаруживаются отек, мукоидное или фибри-ноидное набухание вплоть до фибриноидного некроза. Чувствительность различных органов и тканей к гипоксии колеблется в широких пределах. Некоторые ткани, например, кости, хрящи, сухожилия, относительно малочувствительны к гипоксии и могут сохранять нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом. Поперечнополосатые мышцы «выдерживают» аналогичную ситуацию около 2 ч, сердечная мышца -- 20--30 мин, почки, печень - примерно столько же. Наиболее чувствительна к гипоксии нервная система.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. Компенсаторно-приспособительные  реакции при гипоксии

При действии на организм гипоксических факторов немедленно после начала такого воздействия возникают приспособительные реакции, направленные на устранение возникшего энергетического голодания. Активируется сложная по структуре система обеспечения нормального биологического окисления в тканях, включающая механизмы транспорта и утилизации кислорода. Наряду с активацией деятельности данных систем происходит снижение функциональной активности, а следовательно, энергозатрат и потребления кислорода в тканях, органах и физиологических системах, непосредственно не участвующих в экстренном обеспечении организма кислородом (пищеварительная, выделительная, иммунная, половая и др.). Приспособительные реакции внешнего дыхания на гипоксию выражаются в увеличении альвеолярной вентиляции за счет углубления и/или учащения дыхательных экскурсий и мобилизации резервных альвеол. Эти реакции возникают рефлекторно благодаря раздражению хеморецепторов аортально-каротидной зоны и ствола мозга под влиянием изменившегося газового состава крови. Увеличение вентиляции сопровождается усилением легочного кровообращения, повышением перфузионного давления в капиллярах легких и возрастанием проницаемости альвеолярно-капиллярных мембран для газов. В условиях тяжелой гипоксии дыхательный центр может становиться практически ареактивным по отношению к любым внешним регуляторным влияниям -- как возбуждающим, так и тормозным. В критических ситуациях происходит переход на автономный максимально экономичный для нейронов дыхательного центра режим деятельности по критерию расхода энергии на единицу объема вентиляции. Приспособительные реакции кровообращения на гипоксию проявляются тахикардией, увеличением ударного и минутного объема сердца. Последний может возрастать до 35--40 л вместо 4--5 л в состоянии покоя. Возрастают масса циркулирующей крови за счет опорожнения кровяных депо, скорость кровотока и системное артериальное давление и возникают перераспределительные реакции, обеспечивающие преимущественное кровоснабжение прежде всего мозга и сердца. При глубокой гипоксии сердце может, подобно дыхательному центру, в значительной степени освободиться от внешней регуляции и перейти на автономную деятельность. Конкретные параметры последней определяются метаболическим статусом и функциональными возможностями проводящей системы, кардиомиоцитов и других структурных компонентов сердца. Функциональная изоляция сердца в условиях тяжелой гипоксии, аналогично дыхательной системе, является крайней формой адаптации в критическом состоянии, способной в течение некоторого времени поддерживать необходимый для жизни коронарный и мозговой кровоток.

Важным компенсаторно-приспособительным механизмом на молекулярно-клеточном уровне является усиление гликолиза, «автоматически» происходящее практически во всех случаях гипоксии (о механизмах этой реакции см. выше). Гликолиз по сравнению с тканевым дыханием несравненно менее эффективен (2 молекулы АТФ из одной молекулы глюкозы против 38 молекул) и не заканчивается, подобно реакциям дыхательной цепи, образованием конечных продуктов биологического окисления (Н2О и СО2). Гликолиз неизбежно приводит также к избыточному увеличению концентрации водородных ионов -- к ацидозу. Однако в условиях гипоксии даже сравнительно небольшой вклад в общий энергетический баланс может иметь существенное значение.

У всех живых существ при длительном или повторном воздействии, вызывающем защитно-приспособительные реакции, возникают изменения, повышающие устойчивость организма к воздействию данного фактора. Такие изменения получили название долговременной адаптации. Характерной особенностью адаптированного к какому-либо агенту организма является то, что последний способен сохранять нормальную жизнедеятельность при воздействии данного фактора такой интенсивности, которая у неадаптированного организма вызывает явные нарушения или даже гибель. Продолжительная тренировка физической нагрузкой позволяет спортсмену развивать значительно большее напряжение или совершать больший объем работы, чем до тренировки. Длительное попадание в организм яда может делать организм устойчивым к такой дозе данного вещества, которая является смертельной для неадаптированного организма.

Долговременная адаптация может проявляться на всех уровнях жизнедеятельности -- от метаболического до организменного. При длительном введении яда возрастает мощность метаболических механизмов, обеспечивающих связывание и разрушение яда. При тренировке физической нагрузкой возрастает число ультраструктур в усиленно работающих мышцах, последние подвергаются гипертрофии. Наблюдаются также стойкие изменения свойств различных структур, например митохондрий, приобретающих повышенную эффективность биологического окисления, или рецепторов, изменяющих свою чувствительность. Большое значение могут иметь повышение устойчивости нервных связей и приобретение новых временных (условно-рефлекторных) связей.

Долговременная адаптация - сложный процесс, при котором изменяются отношения между системами: в тех или иных системах, которые определяют приспособление, увеличивается масса субклеточных структур, а в системах, не участвующих в приспособлении, может возникать противоположное явление -атрофия.

Важным проявлением долговременной адаптации к гипоксии является повышение устойчивости нейронов высших отделов мозга к дефициту кислорода. Несмотря на действие тяжелой гипоксии, у адаптированных человека и животных длительное время сохраняются разнообразные временные связи и высокая двигательная активность, они могут осуществлять адекватное поведение при большей степени гипоксии, чем неадаптированные. При долговременной адаптации обнаружена гипертрофия ганглионарных симпатических нейронов, а в сердце -- повышенная плотность симпатических нервных волокон и возрастание их числа на единицу массы.

Адаптационное изменение свойств организма происходит не сразу, а постепенно. Сформированная долговременная адаптация при продолжающемся воздействии вызвавшего ее фактора может сохраняться в течение некоторого времени и после прекращения тренирующих воздействий. Однако в конечном итоге возникшие в организме изменения обязательно редуцируются. Если организм вновь будет подвергаться действию того же фактора, долговременная адаптация к нему может сформироваться повторно. Способность организма совершенствовать свои реакции и свойства при повторяющихся воздействиях факторов окружающей среды выработана в процессе эволюции и представлена в той или иной степени у всех видов живых существ. Вместе с тем сами эти изменения, формируемые у отдельных индивидов под влиянием факторов окружающей среды, не передаются по наследству, хотя они довольно часто являются весьма устойчивыми и существенно изменяют весь облик организма, его фенотип. Поэтому такую долговременную адаптацию называют фенотипической адаптацией.

Адаптационный процесс, развивающийся при длительном или повторном действии на организм гипоксии, включает в себя ряд стадий, сменяющих друг друга. Первой стадией долговременной адаптации к гипоксии является экстренная адаптация, начинающаяся с момента первоначального воздействия на организм гипоксического агента. В этой стадии организм использует механизмы, направленные на сохранение достаточной эффективности биологического окисления в тканях путем стимуляции соответствующих физиологических систем. Кроме гиперфункции данных систем, для стадии срочной адаптации характерно развитие стрессорной реакции. Сущность ее состоит в активации симпатико-адреналовой системы и системы АКТГ - глюкокортикоиды, которые мобилизуют энергетические и пластические ресурсы организма «в пользу» органов и систем, обеспечивающих срочную адаптацию.

Если действие агента, вызвавшего реакции срочной адаптации к гипоксии, продолжается или периодически повторяется в течение достаточно длительного времени, происходит постепенный переход от экстренной к долговременной адаптации организма. Эта, вторая, стадия получила название переходной. Переходная стадия является весьма важным этапом развития адаптационного процесса, поскольку именно в это время организм начинает приобретать повышенную устойчивость к гипоксии.

В случае продолжения или повторения действия гипоксии, которая становится уже тренирующим агентом, в организме формируется третья стадия -- устойчивая долговременная адаптация. Она означает, что организм может нормально осуществлять различные формы деятельности (вплоть до высших) в таких условиях, которые ранее этого «не позволяли».

В том случае, если тренирующее гипоксическое воздействие сразу (или постепенно) прекращается, долговременная адаптация к такому воздействию утрачивается. Как и во время развития адаптации, ее утрата происходит постепенно, составляя 4-ю, завершающую, стадию адаптационного процесса. Эта стадия получила название деадаптации. В процессе последней происходит «обратное развитие» тех структурных изменений, которые обеспечивали повышенную устойчивость организма в периоде долговременной адаптации: уменьшается до нормы число гиперплазированных внутриклеточных структур, гипертрофированные мышцы вновь приобретают свои обычные размеры и т. д. Если воздействие патогенного фактора и связанная с ним гипоксия длятся слишком долго, неуклонно нарастают и учащаются, защитные силы организма начинают постепенно истощаться, и в конце концов происходит «срыв» долговременной адаптации и наступает явление, называемое декомпенсацией. Последняя сопровождается нарастанием деструктивных изменений органов и соответствующими функциональными нарушениями.

гипоксия жизнедеятельность энергообеспечение

 

III. Физиологические процессы в организме при гипоксии

Поскольку в основе явлений гипоксии лежит несоответствие между величинами кислородного запроса организма и способностью транспортных систем в его удовлетворении, общие реакции организма на гипоксию могут иметь двоякую направленность: а) включение физиологических механизмов, увеличивающих доставку кислорода тканям и б) приспособление самих тканей к существованию в бедной кислородом среде или ограничение кислородного запроса путем снижения жизнедеятельности организма или отдельных его систем. Такая схема физиологических изменений позволяет разделить все случаи приспособлений к недостатку кислорода на реактивный тип приспособления, связанный с увеличением транспорта кислорода тканям, и тканевой тип, связанный с приспособлением к недостатку кислорода тканей тела (Campbell, 1926—1927, 1927а, 1927; Барбашова, 1941, 1960; Гинецинский и Барбашова, 1942, 1945; Ольнянская, 1950; Слоним, 1952; Филатова, 1957, и др.).

Физиологическое влияние высоты на организм складывается из уменьшения парциального давления кислорода (вследствие снижения общего барометрического давления с высотой) и понижения температуры окружающей среды. Кроме того, на больших высотах значительную роль играет и ультрафиолетовая солнечная радиация, на равнине в значительной мере задерживаемая атмосферой и изменяющая чувствительность организма к гипоксии.

Длительное пребывание в условиях недостатка кислорода вызывает значительные изменения дыхания. Из морфологических изменений следует указать на увеличение размеров грудной клетки. Последнее установлено для человека, постоянно живущего на высотах (Forbes, 1870, 1875; Jourdanet, 1875; Третьяков, 1895, 1897; Barcroft a. oth., 1923).

Эти морфологические изменения сопровождаются значительным углублением дыхания и возрастанием общей величины легочной вентиляции. Последнее очень четко выявляется у человека при подъеме с равнины на высоту.

Увеличение глубины и отчасти частоты дыхания приводит к возрастанию величины так называемой альвеолярной вентиляции, в результате чего в альвеолах поддерживается более низкое парциальное давление СО2. Последнее является фактором, снижающим возбуждение дыхательного центра. Недостаток углекислоты в альвеолярном воздухе и в крови приводит к акапнии, т. е. к состоянию, когда легочная вентиляция, вследствие снижения возбуждения дыхательного центра, не возрастает, несмотря на развивающиеся явления кислородного голодания. При этом вследствие понижения содержания СО2 в крови ухудшаются условия снабжения тканей кислородом из-за уменьшения степени диссоциации оксигемоглобина. Чувствительность к акапнии у разных организмов весьма сильно различается. Так, у человека акапния быстро приводит к появлению кислородного голодания и горной болезни. У млекопитающих, обладающих механизмом полипноэ, всегда сопровождающимся значительным вымыванием углекислоты из альвеолярного воздуха и из крови, этого почти не наблюдается.

Изменение кровообращения при пребывании на высотах сводится к значительному увеличению объема выбрасываемой сердцем крови (минутного объема сердца), при этом учащается и пульс.

Некоторые считают отсутствие реакции со стороны сердечно-сосудистой системы в процессе приспособления к высотам благоприятным критерием акклиматизации.

Кровяное давление, как правило, в горах возрастает; то же наблюдается и в опытах в барокамерах. Однако во многих горных местностях (например, система Тянь-Шань) эти явления не наблюдаются, в Альпах и на Кавказе, напротив, они выражены очень ярко.

Яркие морфологические изменения наблюдаются в сердце. Впервые они были обнаружены у альпийской горной куропатки (Lagopus; Strohl, 1910) и выражаются в увеличении веса сердца и гипертрофии миокарда. Это подтверждено рядом дальнейших исследований у млекопитающих животных и птиц (Hesse, 1921; Машковцев, 1935; Шварц, 1959), а также у человека (Миррахимов, 1964).

Особое место в изменениях кровообращения занимают изменения кровообращения мозга. В процессе акклиматизации к высотам у крыс наблюдается стойкое (на 30—40%) увеличение содержания крови в мозге (Крепе и сотр., 1956). Кроме того, увеличивается кровоснабжение также печени и мышц, но эти изменения выражены менее ярко, чем увеличение кровообращения мозга.

Огромным количеством исследователей установлено, что в процессе акклиматизации к пребыванию в горах наблюдается увеличение содержания гемоглобина и эритроцитов в крови. Эти изменения в картине красной крови — следствие увеличения кроветворения, а при коротких воздействиях и перераспределения крови, благодаря чему наблюдается возрастание кислородной емкости всей циркулирующей крови. Усиленное кроветворение наступает вследствие раздражения костного мозга; перераспределение крови — благодаря опорожнению кровяных депо: селезенки, печени, сосудов кожи. В табл. 15 приведены некоторые полученные в работах разных авторов данные об изменении содержания эритроцитов в крови у разных животных в связи с пребыванием на высотах. Содержание эритроцитов и гемоглобина в крови определяет ее кислородную емкость. Кислородная емкость крови имеет огромное значение для экономного переноса кислорода, но ее величина не всегда определяет способность животного к существованию в условиях гипоксии.

Информация о работе Реакция организма на гипоксию