Автор работы: Пользователь скрыл имя, 25 Января 2015 в 17:08, контрольная работа
В молодых делящихся растительных клетках вакуоли представляют систему канальцев и пузырьков (провакуоли), по мере роста клеток они увеличиваются, а затем сливаются в одну большую центральную вакуоль. Она занимает от 70 до 90% объема клетки, в то время как протопласт располагается в виде тонкого постенного слоя. В основном увеличение размеров клетки происходит за счет роста вакуоли. В результате этого возникает тургорное давление и поддерживается упругость клеток и тканей.
1. Вакуоль;
1.2. Строение и функции вакуоли;
1.3. Состав и значение клеточного сока;
2. Проводящие тканей;
2.1. Значение проводящих тканей;
2.2. Строение проводящих тканей;
3. Листья растений
3.1. Строение и функции листа;
3.2. Метаморфозы листа;
3.3. Морфология листа;
4. Половое размножение.
5. Список используемой литературы.
В процессе индивидуального развития первичные проводящие ткани образуются из прокамбия в точках роста зародыша семени и почек возобновления. Вторичные проводящие ткани, характерные для двудольных покрытосеменных, порождаются камбием.
В зависимости от выполняемых функций проводящие ткани подразделяются на ткани восходящего тока и ткани нисходящего тока.
Основным назначением тканей восходящего тока является транспорт воды и растворенных в ней минеральных веществ от корня к выше расположенным надземным органам. Кроме того, по ним перемещаются органические вещества, образуемые в корне и стебле, например, органические кислоты, углеводы и фитогормоны. Однако термин «восходящий ток» не следует воспринимать однозначно как передвижение снизу - вверх. Ткани восходящего тока обеспечивают поток веществ по направлению от зоны всасывания к апексу побега. При этом транспортируемые вещества используются как самим корнем, так и стеблем, ветвями, листьями, репродуктивными органами, независимо от того, выше или ниже уровня корней они находятся. Например, у картофеля вода и элементы минерального питания поступают по тканям восходящего тока в столоны и клубни, образуемые в почве, а также в надземные органы.
Ткани нисходящего тока обеспечивают отток продуктов фотосинтеза в растущие части растений и в запасающие органы. При этом пространственное положение фотосинтезирующих органов не имеет никакого значения. Например, у пшеницы органические вещества поступают в развивающиеся зерновки из листьев разных ярусов. Поэтому к названиям «восходящие» и «нисходящие» ткани следует относиться не более как к сложившейся традиции.
2.2. Строение проводящих тканей.
Проводящие ткани
Ксилема и флоэма – это проводящие
ткани, состоящие из нескольких типов
клеток. Они имеются только у папоротникообразных и
Строение ксилемы
Ксилема выполняет в растении как опорную, так и проводящую функцию – по ней движутся вверх по растению вода и минеральные соли. В состав ксилемы входят элементы четырех типов: трахеиды, сосуды, паренхимные клетки и волокна. Трахеиды – мёртвые одиночные клетки веретеновидной формы. Их концы перекрываются, придавая растению необходимую прочность. Вода движется по пустым просветам трахеид, не встречая на своём пути помех в виде клеточного содержимого; от одной трахеиды к другой она передается через поры.
Рост сосудов протоксилемы
Сосуды и трахеиды в древесине клёна (увеличение в 350 раз)
У покрытосеменных трахеиды развились в сосуды. Это очень длинные трубки, образовавшиеся в результате «состыковки» ряда клеток; остатки торцевых перегородок всё ещё сохраняются в сосудах в виде ободков. Размеры сосудов варьируют от нескольких сантиметров до нескольких метров. В первых по времени образования сосудах протоксилемы лигнин накапливается кольцами или по спирали. Это даёт возможность сосуду продолжать растягиваться во время роста. В сосудах метаксилемы лигнин сосредоточен более плотно – это идеальный «водопровод», действующий на большие расстояния.
Паренхимные клетки ксилемы образуют своеобразные лучи, соединяющие сердцевину с корой. Они проводят воду в радиальном направлении, запасают питательные вещества. Из других клеток паренхимы развиваются новые сосуды ксилемы. Наконец, древесинные волокна похожи на трахеиды. Они не проводят воду, но придают дополнительную прочность.
Строение флоэмы. Слева вверху – поперечный разрез, слева внизу – продольный, справа внизу – ситовидные трубки тыквы
Во флоэме, как и в ксилеме, имеются трубчатые структуры, образованные, однако, живыми клетками. Основой этих структур являются ситовидные трубки, образующиеся в результате соединения ряда клеток. Ядра таких клеток после созревания отмирают, а цитоплазма прижимается к стенкам, освобождая путь для органических веществ. Торцевые стенки клеток ситовидных трубок постепенно покрываются порами и начинают напоминать сито – это ситовидные пластинки. Во флоэме имеются клетки и других видов: лубяные волокна, лубяная паренхима, склереиды.
3.Листья растений
3.1 Строение и функции листа
Лист – чрезвычайно важный орган растения. Лист – часть побега.
Основными функциями его являются фотосинтез и транспирация. Лист характеризуется высокой морфологической пластичностью, разнообразием форм и большими приспособительными возможностями. Основание листа может расширяться в виде косых листовидных образований – прилистников с каждой стороны листа. В некоторых случаях они настолько велики, что играют определённую роль в фотосинтезе. Прилистники бываю свободными или приросшими к черешку, они могут смещаться на внутреннюю сторону листа и тогда их называют пазушными. Основания листьев могут быть превращены во влагалище, окружающее стебель и препятствующие его сгибанию
Внешнее строение листа
Листовые пластинки различаются по размерам: от нескольких миллиметров до 10-15 метров и даже 20 (у пальм). Продолжительность жизни листьев не превышает нескольких месяцев, у некоторых – от 1,5 до 15 лет. Размер и форма листьев являются наследственными признаками.
Части листа
Лист – боковой вегетативный орган, растущий от стебля, имеющий двустороннюю симметрию и зону роста при основании. Лист обычно состоит из листовой пластинки, черешка (исключением являются сидячие листья); для ряда семейств характерны прилистники. Листья бываю простые, имеющие одну листовую пластинку, и сложные – с несколькими листовыми пластинками (листочками).
Простые и сложные листья
Лист может иметь одну (простой), несколько или множество листовых пластинок. Если последние снабжены сочленениями, то такой лист называется сложным. Благодаря сочленениям на общем черешке листа листочки сложных листьев опадают поодиночке. Однако у некоторых растений сложные листья могут опадать и целиком.
По форме цельные листья, различают как лопастные, раздельные и рассечённые.
Если пластинка удлинённая,
а доли или сегменты её треугольные, лист
называют струговидным (
Что касается сложных листьев, то среди них различают тройчатосложные, пальчатосложные и перистосложные листья. Если сложный лист состоит из трёх листочков, он называется тройчатосложным, или тройчатым (клён). Если черешочки листочков прикрепляются к главному черешку как бы в одной точке, а самые листочки расходятся радиально, лист называется пальчатосложным (люпин). Если на главном черешке боковые листочки расположены с обеих сторон по длине черешка, лист называется перистосложным.
Если такой лист заканчивается наверху непарным одиночным листочком, получается, непарноперистый лист. Если же конечного нет, лист называется парноперистым.Если каждый листочек перистосложного листа, в свою очередь, является сложным, то получается дважды перистосложный лист.
Формы цельных листовых пластинок
Сложным листом называют такой, на черешке которого имеется несколько листовых пластинок. Они крепятся к главному черешку своими собственными черешками, нередко самостоятельно, поодиночке, опадают, и называются листочками.
Формы листовых пластинок различных растений отличаются по очертанию, степени расчленённости, форме основания и верхушки. Очертания могут быть овальными, круглыми, эллиптическими, треугольными и другими. Листовая пластинка бывает удлиненной. Свободный конец её может быть острым, тупым, заострённым, остроконечным. Основание её сужено и оттянуто к стеблю, может быть округлым, сердцевидным.
Прикрепление листьев к стеблю
Листья прикрепляются к побегу длинными, короткими черешками или бывают сидячими.
У некоторых растений основание сидячего листа на большом протяжении срастается с побегом (низбегающий лист) или побег пронизывает листовую пластинку насквозь (пронзённый лист).
Форма края листовой пластинки
Листовые пластинки различают по степени рассечённости: неглубокие надрезы – зубчатые или пальчатые края листа, глубокие вырезы – лопастные, раздельные и рассечённые края.
Если края листовой пластинки не имеют никаких выемок, лист называется цельнокрайним. Если выемки по краю листа неглубокие, лист называется цельным.
Край листовой пластинки – пильчатый (острые углы).
Край листовой пластинки – городчатый (округлые выступы).
Край листовой пластинки – выемчатый (округлые выемки).
Жилкование
На каждом листе легко заметить многочисленные жилки, особенно отчётливые и рельефные на нижней стороне листа
Жилки – это проводящие пучки, соединяющие лист со стеблем. Функции их – проводящая (снабжение листьев водой и минеральными солями и выведение из них продуктов ассимиляции) и механическая (жилки являются опорой для листовой паренхимы и защищают листья от разрывов). Среди разнообразия жилкования различают листовую пластинку с одной главной жилкой, от которой расходятся боковые ответвления по перистому или пальчатоперистому типу; с несколькими главными жилками, различающимися толщиной и направлением распределения по пластинке (дугонервный, параллельный типы). Между описанными типами жилкования существует много промежуточных или иных форм.
Исходная часть всех жилок листовой пластинки находится в черешке листа, откуда выходит у многих растений основная, главная жилка, разветвляясь потом в толще пластинки. По мере удаления от главной, боковые жилки всё утончаются. Самые тонкие большей частью находятся на периферии, а также вдали от периферии – посредине участков, окружённых мелкими жилками.
Существует несколько типов жилкования. У однодольных растений жилкование бывает дугонервным, при котором от стебля или влагалища вступает в пластинку ряд жилок, дугообразно направленных к вершине пластинки. У большинства злаков имеет место параллельнонервное жилкование. Дугонервное жилкование существует также у некоторых двудольных растений, например, подорожника. Однако и у них имеется связь между жилками.
У двудольных растений жилки образуют сильно разветвлённую сеть и соответственно этому различают жилкование сетчатонервоное, что говорит о лучшем обеспечении проводящими пучками.
Форма основания, верхушки, черешка листа
По форме верхушки пластинки листья бывают тупые, острые, заострённые и остроконечные.
По форме основания пластинки различают листья клиновидные, сердцевидные, копьевидные, стреловидные и др.
Внутреннее строение листа
Строение кожицы листа
Верхняя кожица (эпидерма) – покровная ткань на обращённой стороне листа, часто покрытая волосками, кутикулой, воском. Снаружи лист имеет кожицу (покровную ткань), которая защищает его от неблагоприятных воздействий внешней среды: от высыхания, от механических повреждений, от проникновения к внутренним тканям болезнетворных микроорганизмов.
Клетки кожицы живые, по размерам и форме они разные. Одни из них более крупные, бесцветные, прозрачные и плотно прилегают друг к другу, что повышает защитные качества покровной ткани. Прозрачность клеток позволяет проникать солнечному свету внутрь листа.
Другие клетки более мелкие, в них имеются хлоропласты, придающие им зелёный цвет. Эти клетки располагаются парами и обладают способностью изменять свою форму. При этом клетки или отдаляются друг от друга, и между ними появляется щель, или приближаются друг к другу и щель исчезает. Эти клетки назвали замыкающими, а возникающую между ними щель – устьичной. Устьице открывается, когда замыкающие клетки насыщены водой. При оттоке воды из замыкающих клеток устьице закрывается.
Строение устьица
Через устьичные щели воздух поступает к внутренним клеткам листа; через них же газообразные вещества, в том числе и пары воды, выходят из листа наружу. При недостаточном обеспечение растения водой (что может случиться в сухую и жаркую погоду), устьица закрываются. Этим растения защищают себя от иссушения, так как водяные пары при закрытых устьичных щелях не выходят наружу и сохраняются в межклетниках листа. Таким образом, растения сохраняют воду в засушливый период.
Основная ткань листа
Столбчатая ткань – основная ткань, клетки которой имеют цилиндрическую форму, плотно прилегают друг к другу и расположены с верхней стороны листа (обращённой к свету). Служит для фотосинтеза. Каждая клетка этой ткани имеет тонкую оболочку, цитоплазму, ядро, хлоропласты, вакуоль. Наличие хлоропластов придаёт зелёный цвет ткани и всему листу. Клетки, которые прилегают к верхней кожице листа, вытянуты и расположены вертикально, называют – столбчатой тканью.
Губчатая ткань – основная ткань, клетки которой имеют округлую форму, расположены рыхло и между ними образуются крупные межклетники, также заполненные воздухом. В межклетниках основной ткани накапливаются пары воды, поступающие сюда из клеток. Служит для фотосинтеза, газообмена и транспирации (испарения).