Автор работы: Пользователь скрыл имя, 18 Мая 2014 в 14:24, реферат
В ХХI веке человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов - угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии, таких как энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов.
Введение 3
Глава 1. Освоения альтернативных видов энергии 4
1. Предпосылки поиска и освоения альтернативных видов энергии 4
2. Плюсы и минусы альтернативных видов энергии 5
Глава 2. Основные виды альтернативной энергии 6
1. Водяные и ветряные мельницы 6
2. Солнечные электростанции. 6
3. Ветряные электростанции. 9
4. Приливные электростанции. 10
5. Тепловые электростанции. 12
6. Геотермальные электростанции. 12
7. Атомные электростанции. 13
8. Термоядерные электростанции. 13
9. Переработка мусора 13
10. Переработка навоза 14
11. Альтернатива бензину (биотопливо) 15
12. Экологические деревни 17
Заключение 19
Библиографический список 20
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ АГРОИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ
Факультет: экономический.
Кафедра: физике.
РЕФЕРАТ
ПО ТЕМЕ:
«Альтернативные виды энергии в агропромышленном комплексе».
Студенты:
Руководитель:
Содержание:
В ХХI веке человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов - угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии, таких как энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов.
Агропромышленный комплекс – это один из основных потребителей энергии. Почти во всех странах АПК машинизирован, что требует огромных затрат на различные виды топлива, а это невыгодно предприятиям.
Актуальность нашей работы заключается в следующем:
Перспективы альтернативных источников энергии мы видим в развитии проектов:
-биотоплива;
-экологических деревень.
В связи с вышеизложенным задачами данной работы являются:
По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти - 300 миллиардов тонн газа - 220 триллионов кубометров. Разведанные запасы угля составляют 1685 миллиардов тонн, нефти - 137 миллиардов тонн, газа - 142 триллионов кубометров. Почему же наблюдается тенденция к освоению альтернативных видов энергии, при таких, казалось бы, внушительных цифрах, при том, что в последние годы в шельфовых зонах морей открыты огромные запасы нефти и газа?
Есть несколько ответов на этот вопрос. Во-первых, непрерывный рост агропромышленности, как одного из основных потребителей энергетической отрасли. Существует точка зрения, что при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на 35-40 лет, газа на 50 лет. Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Склады нефтепродуктов и окружающие их территории подчас напоминают “города мертвых”, а кадры кинохроники о плавающих в нефтяной пленке морских птицах и животных тревожат не только Greenpeace.
Не менее важной причиной необходимости освоения альтернативных источников энергии является проблема глобального потепления. Суть ее заключается в том, что двуокись углерода (СО2), высвобождаемая при сжигании угля, нефти и бензина в процессе получения тепла, электроэнергии и обеспечения работы транспортных средств, поглощает тепловое излучение поверхности нашей планеты, нагретой Солнцем и создает так называемый парниковый эффект.
Альтернативные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная, следовательно, себестоимость сельхозпродукции снижается.
Отрицательные качества - это
малая плотность потока (удельная
мощность) и изменчивость во времени
большинства альтернативных ист
Больше неприятностей доставляет изменчивость во времени таких источников энергии, как солнечное излучение, ветер, приливы, сток малых рек, тепло окружающей среды. Если, например, изменение энергии приливов строго циклично, то процесс поступления солнечной энергии, хотя в целом и закономерен, содержит, тем не менее, значительный элемент случайности, связанный с погодными условиями. Еще более изменчива и непредсказуема энергия ветра. Зато геотермальные установки при неизменном дебите геотермального флюида в скважинах гарантируют постоянную выработку энергии (электрической или тепловой). Кроме того, стабильное производство энергии могут обеспечить установки, использующие биомассу, если они снабжаются требуемым количеством этого «энергетического сырья».
Каковы же нетрадиционные и возобновляемые источники энергии (НВИЭ)? К ним обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн, биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды. К НВИЭ также принято относить малые ГЭС (мощностью до 30 МВт при мощности единичного агрегата не более 10 МВт), которые отличаются от традиционных - более крупных - ГЭС только масштабом.
Впервые человек в виде альтернативного источника энергии начал использовать водяные и ветряные мельницы.
Водяная мельница — гидротехнические сооружение, использующее гидроэнергию получаемую c водяного колеса, движение которого выполняет полезную работу посредством зубчатой передачи. Для усиления энергии воды, реку перегораживают плотиной, в которой оставляют отверстие для струи воды, вращающей водяное колесо (приложение 1).
Ветряная мельница — аэродинамический механизм, использующий энергию ветра, состоящий из колеса с лопастями и передач. По сути, ветряная мельница является турбиной (приложение 2).
Считается, что ветряная мельница впервые появилась в VII веке в Персии.
В России ветряные мельницы традиционно использовалась для помола зерна или подъёма воды. Современные ветряные электростанции обеспечивают электроэнергией небольшие хозяйства и предприятия.
Основным видом “бесплатной” неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99, 886% всей массы солнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235 .
В настоящее время строятся солнечные электростанции в основном двух типов: солнечные электростанции башенного типа и солнечные электростанции распределенного (модульного) типа (приложение 3).
В башенных солнечных электростанциях используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550ºС, воздух и другие газы — до 1000ºС, низкокипящие органические жидкости (в том числе фреоны) — до 100ºС, жидкометаллические теплоносители — до 800ºС.
Солнце ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются предприятия площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.
Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света.
Это достижение стало возможным, с одной стороны, благодаря использованию двухслойной конструкции. Верхний слой - из арсенида галлия. Он поглощает излучение видимой части спектра. Нижний слой - из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.
В Японии ученые работают над совершенствованием фотогальванических элементов на кремниевой основе. Если толщину солнечного элемента существующего стандарта уменьшить в 100 раз, то такие тонкопленочные элементы потребуют гораздо меньше сырья, что обеспечит их высокую эффективность и экономичность. Кроме того, их малый вес и исключительная прозрачность позволят легко устанавливать их на фасадах зданий и даже на окнах, для обеспечения электроэнергией предприятий. Однако поскольку интенсивность солнечного света не всегда и не везде одинакова, то даже при установке множества солнечных батарей, зданию потребуется дополнительный источник электричества. Одним из возможных решений этого вопроса является использование солнечных элементов в комплексе с двухсторонним топливным элементом. В дневное время, когда работают солнечные элементы, избыточную электроэнергию можно пропускать через водородный топливный элемент и таким образом получать водород из воды. Ночью же топливный элемент сможет использовать этот водород для производства электроэнергии.
Компактная передвижная электростанция сконструирована германским инженером Хербертом Бойерманом. При собственном весе 500 кг она имеет мощность 4 КВт, иначе говоря, способна полностью обеспечить электротоком достаточной мощности небольшое предприятие. Это довольно хитроумный агрегат, где энергию вырабатывают сразу два устройства - ветрогенератор нового типа и комплект солнечных панелей. Первый оснащен тремя полусферами, которые (в отличие от обычного ветрового колеса) вращаются при малейшем движении воздуха, второй - автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытая энергия накапливается в аккумуляторном блоке, а тот стабильно снабжает током потребителей.
Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, “Южно-калифорнийская компания Эдисон” планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Уже в 1981г. через пролив Ла-Манш совершил перелёт первый в мире самолёт с двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часов. А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах.
На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с (приложение 4).
Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И тем не менее всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин.
Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Генератор в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают, как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток.
Информация о работе Альтернативные виды энергии в агропромышленном комплексе