Автор работы: Пользователь скрыл имя, 23 Ноября 2014 в 16:13, контрольная работа
Клетка – сложное образование, в ней обнаружены различные микроскопические и субмикроскопические структуры, обладающие высокой динамичностью и способностью закономерно изменяться соответственно изменениям условий существования организма и приспосабливаться к ним.
1.(4) Физиологическая роль основных клеточных органелл.
2.(26) Раздражимость и возбудимость клетки. Ответные реакции протопласта на физические и химические воздействия.
3.(42) Транспирация как физиологический процесс. Факторы, определяющие величину транспирации
4.(76) Влияние внутренних и внешних факторов на фотосинтез.
5.(102) Необходимые растению макроэлементы, их усвояемые соединения
6.(122) Понятие о росте и развитии. Принципы регуляции роста и развития.
7.(144) Физиологические особенности растений в период вынужденного покоя.
8.(161) Приспособление растений к низким положительным температурам. Холодоустойчивость растений.
9.(190) Температурные пределы жизни и диапазоны температур для отдельных жизненных процессов.
10. Список используемой литературы.
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ
ФГБОУ ВПО ИРКУТСКАЯ ГОСУДАРСТВЕННАЯ
СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ
Агрономический факультет
Кафедра Агроэкологии, агрохимии, физиологии и защиты растений
КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИОЛОГИИ
РАСТЕНИЙ
Выполнил: студент 3 курса
агрономического факультета
заочного обучения
Фолина С.В.
Специальность:
110400.62
Шифр 12218
Проверил:
Клименко Н.Н.
Иркутск 2014
Содержание
1.(4) Физиологическая роль основных клеточных органелл.
2.(26) Раздражимость и возбудимость клетки. Ответные реакции протопласта на физические и химические воздействия.
3.(42) Транспирация как
физиологический процесс. Факторы,
определяющие величину
4.(76) Влияние внутренних
и внешних факторов на
5.(102) Необходимые растению макроэлементы, их усвояемые соединения
6.(122) Понятие о росте и развитии. Принципы регуляции роста и развития.
7.(144) Физиологические особенности
растений в период
8.(161) Приспособление растений
к низким положительным
9.(190) Температурные пределы
жизни и диапазоны температур
для отдельных жизненных
10. Список используемой литературы.
1.(4) Физиологическая роль основных клеточных органелл
Клетка – сложное образование, в ней обнаружены различные микроскопические и субмикроскопические структуры, обладающие высокой динамичностью и способностью закономерно изменяться соответственно изменениям условий существования организма и приспосабливаться к ним.
Наиболее важными структурами являются ядро и цитоплазма, которые тесно связаны между собой и не могут существовать друг без друга, однако строение и функции их неодинаковы.
Структурные элементы клетки можно разделить на три большие функциональные группы:
1) органеллы, которые катализируют превращение энергии, – митсхондрии и хлоропласта;
2) органеллы, которые катализируют репликацию белков, – рибосомы, полирибосомы;
3) клеточные гранулы и другие
образования, которые принимают
участие в синтетических
Ядро – главный управляющий органоид клетки. Оно покрыто тонкой двухслойной мембраной с порами для соединения ядра с цитоплазмой. Ядро обычно имеет шарообразную форму, но в некоторых случаях – палочкообразную, лопастную и даже сетчатую. В ядре хорошо видна еще меньшая по размеру структура – ядрышко, в котором накапливается и, по-видимому, синтезируется РНК, которая затем переносится в цитоплазму, где она становится основной структурной единицей рибосом. В ядрах содержится большое количество ферментов, обеспечивающих освобождение энергии, ее трансформацию и осуществление многочисленных синтезов. Таким образом, энергетически ядра являются полностью независимыми органоидами клетки, состав их ферментов обеспечивает образование аденозинтрифосфорной кислоты (АТФ) в процессе гликолиза и свидетельствует о высокой метаболической активности.
Химическими компонентами ядра являются в основном белки и нуклеиновые кислоты.
Основные (щелочные) белки – это протамины и гистоны, которые содержат много основных аминокислот: лизина, гистидина и особенно аргинина. Протамины и гистоны с нуклеиновыми кислотами образуют нуклеопротеиды. Другие белки могут содержаться в ядре в виде самостоятельной фазы. Ядрышко состоит из больших гранул, которые по размеру близки к рибосомам (диаметр 15 нм) и содержат большое количество РНК. Основное вещество ядра называется нуклеоплазмой. Ядро содержит хромосомы, которые являются носителями наследственности. Хромосомы имеют хроматиновые структуры, основным компонентом которых является ДНК, а также РНК.
Цитоплазма – пронизана системой мембран, которые отходят от ядерной оболочки и соединяются с внешней мембраной клетки. Эти внутренние клеточные мембраны, образующие густо переплетенную мембрану с многочисленными канальцами и полостями, называют эндоплазм этической сетью. Функциональное значение последней разнообразно. Она принимает участие в синтезе и перемещении ассимилятов. Мембраны эндоплазматической сети пронизывают и объединяют в единое целое клетку, а также служат своеобразными путями перемещения ассимиляторов и передачи раздражения от клетки к клетке, которая осуществляется последовательной перезарядкой поверхности мембран. Химически клеточные мембраны гетерогенны и состоят из протеидов (80%, из них 25% приходится на белки-ферменты) и липидов (20%), среди которых много фосфолипидов.
Митохондрии (от греч. митос – нить, хондрион – гранулы) – органеллы шарообразной формы, диаметром 0,5 мкм и длиной 2 мкм. Это нестойкие структуры, в липофильных жидкостях они разрушаются, а в воде набухают; имеют двойную оболочку, состоящую из внутренней и внешней мембран. Между мембранами есть просвет (10 нм), заполненный сывороткой. Внутренняя мембрана митохондрий образует кристы, или трубочки. К внутренней мембране со стороны стромы присоединены с помощью «стебельков», или ножек, частицы, которые получили название оксисом, потому что они содержат окислительные ферменты. Внутреннее пространство митохондрий заполнено матриксом, или хондриоплазмой, – вязким раствором, содержащим ферменты.
Митохондрии состоят из белка и липидов, среди которых половина приходится на фосфолипиды. Неотъемлемыми компонентами митохондрий являются дезоксирибонуклеиновая кислота (ДНК) и все типы РНК. Находящаяся в матриксе митохондрий ДНК в виде нитей способна к независимой от ДНК ядра репликации. В митохондриях обнаружены специфические рибосомы, которые обеспечивают автономный синтез некоторых белков. Так, митохондрии проростков гороха содержат (в%): белка – 30–40, РНК – 0,5–1,0 и фосфолипидов – 30. В митохондриях сосредоточены ферменты цикла трикарбоновых кислот, флавопротеиды и цитохромы. Митохондрии, дыхательные центры клетки обладают следующими функциями:
1) осуществляют окислительные
2) переносят электроны по цепи компонентов, синтезирующих АТФ;
3) катализируют синтетические
4) регулируют биохимические
Пластиды – имеют двойную мембранную оболочку, внутри которой находится гранулярное вещество, называемое стромой. В начале развития строма пластид имеет гранулярное строение. Структура хлоропласта формируется в несколько этапов. Первичная дифференциация пластиды начинается с инвагинаций внутренней мембраны до образования проламеллярного тела (без света). Второй этап связан с образованием ламеллярногранулярного строения, биосинтезом и накоплением хлорофилла. В хлоропластах высших растений образуются граны, которые состоят из серии ламелл или двойных мембран. Каждая двойная мембрана образует закрытый мешочек, или сумку, которая называется тилакоидом. Ламеллы состоят из белков и липидов. Химический анализ ламелл. выделенных из хлопопластов шпината, показал, что они на 52% состоят из белка и на 48% из липидной фракции, которая включает хлорофилл а и в, каротиноиды (ксантофиллы и каротины), пластохинон, витамин К1, фосфолипиды (галактозилглицериды, фосфоглицериды), сульфолипиды.
Рибосомы – это рибонуклеопротеидные частицы сферической формы, диаметром 15–35 мм. Они состоят приблизительно из одинакового количества структурного белка и высокополимерной РНК. Комплексы из пяти и более рибосом называются полирибосомами или полисомами. Каждая рибосома состоит из двух субъединиц с различными коэффициентами седиментации, которые агрегируют в рибосому с помощью ионов магния. Слипаясь по две, они образуют димеры.
Рибосомы очень пористые и отличаются высокой степенью гидратации, выполняя чрезвычайно важные функции в обмене веществ – это центры биосинтеза белка в клетке. Функции рибосом в белковом синтезе заключаются в том, что они осуществляют процесс, в котором активированные аминокислоты конденсируются, образуя полипептидную цепь.
Сферосомы – субмикроскопические компактные частицы цитоплазмы диаметром 0,4–0,8 мкм, содержат белковую строму и цитохромоксидазу, ферментативно активные, богаты жирами. Сферосомы, по-видимому, осуществляют биосинтез жиров, а именно последний его этап – переэтерифнкацию глицерофосфата путем обмена между фосфорной кислотой и жирными кислотами. Таким образом, Сферосомы считают специализированными органеллами, функция которых – биосинтез жиров.
Лизосомы по структуре и химическому составу близки к сферосомам, но богаче ферментами – в них найдены ферменты нуклеазы, фосфатазы, протеазы и т.д. Вполне вероятно, что лизосомы переваривают макромолекулярные продукты, поглощенные путем пиноцитоза. Они принимают участие и в автолизе клетки.
Цитосомы – мелкие гранулы, которые находятся в тесном контакте с мембранами эндоплазматической сети, чем и отличаются от свободнолежащих сферосом и лизосом.
Транслосомы – толстостенные гранулы, функция которых, по-видимому, заключается в накоплении продуктов метаболизма фенольных производных и их транспортировке в вакуоль.
Наконец, так называемые диктиосомы, или тельца Гольджи, которые могут состоять из отдельных пластинок, палочек и чешуек, разбросанных по всей цитоплазме клетки. Возможно, что аппарат Гольджи принимает участие в управлении общим ходом физиологических процессов, в образовании вакуолей и клеточных оболочек.
Клеточная оболочка состоит из клетчатки, или целлюлозы (С6Н10О6)n, – полисахарида, который гидролизуется до глюкозы; клетчатка является главным веществом хлорофиллоносных растений и по абсолютному количеству занимает первое место среди всех органических веществ на земной поверхности.
Клеточная оболочка начинает развиваться с образования клеточной пластинки в анафазе митоза. Это происходит сразу после деления ядра. Целлюлоза в виде микрофибрилл образует каркас. Микрофибриллы – эластичный строительный элемент клеточной оболочки (стенки). Диаметр микрофибриллы составляет 10–30 нм, длина несколько микрометров.
Основная функция вакуоли – поддержание гомеостаза клетки. В клеточном соке вакуоли в растворенном состоянии содержатся соли, сахаристые вещества, белки, аминокислоты, органические кислоты, липоиды, а также пигменты, которые относятся главным образом к группе флавоноидов. Так, пигменты антоцианы придают лепесткам цветков и другим частям растения красную, фиолетовую, синюю окраску. В корнях столовой свеклы красный цвет обусловливается присутствием в клеточном соке бетанина – гликозида β-цианина (азотсодержащего аналога антоцианина).
2.(26) Раздражимость и возбудимость клетки. Ответные реакции протопласта на физические и химические воздействия
Клетка - это мельчайшая единица жизни, которая характеризуется определенным типом обмена веществ, самостоятельным энергетическим циклом и способностью к саморегуляции. Клетка - это открытая термодинамическая система, существующая при сопряженности потоков вещества, энергии и информации. Поток информации - это отражение состояния либо отдельных клеток, либо их органоидов, выражающееся в их биологической функции.
Основой дифференциации
метаболических процессов в
В растительной клетке различают три основных компартмента: свободное пространство (СП), цитоплазму, вакуоль.
В СП находятся углеводы и их приток и отток не контролируется клеточными мембранами.
В цитоплазме и сферосомах происходит биосинтез органических веществ и каждая из органелл, осуществляющая такой биосинтез, играет роль реакционных отсеков. Таким образом цитоплазма делится в свою очередь на множество мелких компартментов.
Вакуоль является компартментом, в котором сосредоточены запасы неорганических веществ, в том числе и воды, и простых органических веществ (органических кислот, биоз, триоз, тетроз).
Все процессы, происходящие в клетке, управляются тремя основными регулирующими системами: генетической, которая обеспечивает включение и выключение отдельных генов, гормональной, которая реализуется за счет синтеза в клетке специфических белков, либо запускается в клетке при поступлении гормона от других клеток организма, факторами внешней среды, которые обладают трофической регуляторной функцией и энергетической регуляторной функцией. Трофические факторы - это химические вещества, образующиеся в результате метаболизма. Они выступают и как участники обмена веществ, и как регуляторы ферментативной активности. Энергетический фактор - это синтезирующиеся в клетке макроэргические молекулы АТФ.
Информация о работе Контрольная работа по "Физиология растений"