Селекция лиственницы сибирской и организация ПЛСБ в Оленгуйском лесхозе

Автор работы: Пользователь скрыл имя, 06 Ноября 2013 в 15:48, курсовая работа

Описание работы

Селекция - это наука о методах создания сортов и гибридов растений, пород животных и штаммов микроорганизмов с нужными человеку признаками. То есть в понятие селекции как науки вкладывается более широкий смысл, чем в исходный термин. Селекцией еще называют отрасль производства, занимающуюся выведением сортов и гибридов растений, а также животных. При селекционном процессе, и в частности лесных древесных пород, используют методы многих смежных наук (дендрологии, экологии, физиологии, математики и др.). Но основные в настоящее время следующие: отбор, гибридизация с использованием гетерозиса и цитоплазматической мужской стерильности, полиплоидия и мутагенез, и некоторые другие.

Содержание работы

Введение
Характеристика лесорастительных условий и лесного фонда лесхоза
.1 Географическое местоположение района проектирования
.2 Краткая характеристика климатических условий
.3 Рельеф и почва
.4 Характеристика лесного фонда
Методы селекции
.1 Отбор
.2 Гибридизация
.3 Мутагенез
.4 Полиплоидия
.5 Генная инженерия
Создание ПЛСБ
.1 Отбор плюсовых деревьев и насаждений
.2 Формирование ПЛСУ
.2.1 Отвод участка под ПЛСУ
.2.2 Хозяйственные мероприятия, проводимые на ПЛСУ
.3 Лесосеменная плантация
.3.1 Характеристика участка, выбранного под ЛСП
.3.2 Виды ЛСП
.3.3 Агротехника выращивания растений на ЛСП
Расчетная часть
.1 Расчет площадей ПЛСУ
Заключение
Библиографический список

Файлы: 1 файл

готовый.docx

— 64.39 Кб (Скачать файл)

Факторы, вызывающие изменения  в молекулах ДНК или хромосомах, называются мутагенными. Мутагенными  свойствами обладают такие физические факторы как ионизирующая радиация, ультрафиолетовые лучи, температурные  шоки, лазерное излучение, а также  многие химические соединения.

В настоящее время в  мутационной селекции наибольшее применение находят ионизирующие излучения, которые  по своей природе подразделяются на волновые и корпускулярные. К волновым излучениям относятся ультрафиолетовые лучи (длина волны 2000-4000 а), рентгеновы лучи (0,05 - 10 а) и гамма-лучи (менее 0,05А). К корпускулярным излучениям относятся а-частицы, протоны, нейтроны, дейтроны и др.

В основе оценки чувствительности к мутагену лежит общая закономерность, известная под названием закона Арндта-Шульце. Суть его заключается в том, что слабое воздействие мутагеном способствует стимуляции процессов жизнедеятельности растений. По мере усиления воздействия мутагеном стимулирующий эффект возрастает и достигает своего предела, затем постепенно падает и снижается до нуля, после чего переходит в свою противоположность, то есть начинает подавлять процессы жизнедеятельности и тем больше, чем сильнее действие мутагенов. Подавляющее воздействие мутагенов постепенно возрастает вплоть до полной гибели клеток, органа или всего растения. Схематически закон Арндта-Шульце представлен на примере отзывчивости желудей дуба черешчатого на рентгеново облучение.

Различают стимулирующие, критические, летальные и оптимальные дозы мутагенов. Дозы мутагена определяются мощностью источника излучения  или концентрацией его (для химических мутагенов) и продолжительностью воздействия на растения, или экспозицией.

Единицей дозы облучения  волновыми излучениями служит рентген, равный количеству излучения, при котором  в 1 см3 сухого воздуха при 00С и  давлении 760 мм рт. ст. образуется 2,1*109 дар ионов. Доза нейтронов определяется их количеством, приходящимся на 1 см2 облучаемой поверхности. 1000 рентген (р) равны 1 килорентгену (кр).

Сравнимость доз облучения  достигается при их переводе в  дозы поглощения. Единицей дозы поглощения является 1 рад., равный количеству излучений, эквивалентному поглощению 1 граммом вещества энергии в 100 эрг. 1 рад соответствует 1,07 рентгена.

Стимулирующими называются дозы, при которых наблюдается  совершенствование процессов жизнедеятельности  у обрабатываемых растений в сравнении  с контролем, например, повышение  всхожести семян, ускорение роста, увеличение урожая и т.д.

Дозы, при которых всхожесть  семян составляет около 50% от контроля, а выживаемость - 20-30% от числа всходов, называются критическими.

Дозы, вызывающие гибель обрабатываемого  материала, называются летальными, а  дозы, при которых на единицу выживаемости растения получается наибольшее количество мутаций, - оптимальными.

При оценке чувствительности растения к мутагенам учитываются  такие признаки, как энергия прорастания  семян, их всхожесть, выживаемость растений, степень подавления роста, плодовитость и стерильность растения, число и  типы хромосомных перестроек в первом митозе в клетках проростков.

Существенные изменения  в реакции организма на облучение  вносят технические условия обработки: вид излучения, мощность и величина дозы, содержание кислорода при облучении  и после него.

Сходная картина наблюдается  при обработке растений химическими мугагенами.

Постановка задач при  селекции методом индуцированного  мутагенеза исходит из направлений  селекции и района работы. Растения подбирают, как правило, с минимальным  числом отрицательно выраженных признаков, которые подлежат улучшению посредством  мутагенеза. В качестве растительного  материала для получения гаметических мутаций берут пыльцу, срезанные до споро- или гаметогенеза ветви с пестичными или тычиночными цветками, а также целые растения. Для получения соматических мутаций используют семена, черенки с вегетативными почками, целые растения. Растительный материал подбирают в таком физиологическом состоянии, чтобы при имеющихся в распоряжении селекционера технических возможностях было бы возможно выращивание растений из обработанного мутагенами материала.

Выбор мутагенов зависит  от применяемых доз и практической их доступности. В районных центрах  и поселках, где есть лечебные учреждения с терапевтической рентгеновской  установкой, доступны ультрафиолетовые лучи для работы с пыльцой и каллусными тканями, а также рентгеновы лучи для работы с пыльцой, семенами, черенками. В областных центрах и крупных городах, где есть онкологические отделения, вполне реально использование гамма-лучей кобальтовых пушек. Не является проблемой приобретение в лесничества или лесхозы гупосов (гамма-установок предпосевной обработки семян), химических мутагенов и элементарного оборудования для работы с ними.

Обработка растений корпускулами пока возможна только в ядерных колонках нескольких научно-исследовательских  центров. Функционируют международные  центры по мутагенезу с гамма-полями. Для выбора рабочих доз обработки растительных объектов необходимо располагать информацией о чувствительности растений к мутагену. Если такой информации нет, то предварительно экспериментальным путем следует установить области стимулирующих, нейтральных, оптимальных, критических и летальных доз. В дальнейшем в целях получения большего количества точковых мутаций следует работать в области стимулирующих и нейтральных доз. Если нужно получить хромосомные и хроматидные мутации, рекомендуется работать в области оптимальных и критических доз.

В работе с химическими  мутагенами пользуются 0,00001-0,01%-ми концентрациями растворов. Обязательны меры предосторожности в работе со всеми мутагенами.

Обработанный мутагенами материал используется далее или  для скрещивания, или для посадки, прививки, посева. Организуются наблюдения за опытными и контрольными растениям. Ведется журнал селекции, где отмечаются все характеристики исходного материала (вид; внутривидовой таксой; адрес и условия произрастания; какой орган обработан; когда, где и как заготовлен и хранился исходный материал; когда, чем, как обработан; что сделано после обработки; результаты наблюдений).

Перспективные гаметические и соматические мутанты могут быть сразу отобраны. В таких случаях они поступают на сортоиспытание.

Если же наряду с полезными  мутанты несут отрицательные  изменения, то их скрещивают с ценными  видами или формами или повторно обрабатывают мутагенами, а затем  уже производят отбор и испытание  представляющих интерес мутантов.

Как уже отмечалось, соматические мутации могут возникать не во всех клетках обрабатываемого растения, а только в некоторых из них. В  этих случаях растения оказываются  химерными. Как правило, измененные клетки делятся медленнее нормальных, что приводит к постепенному вытеснению мутантных тканей нормальными. Это явление получило название соматического отбора» Для выявления скрытых соматических мутаций применяются специальные приемы расхимеривания. У древесных видов расхимеривание можно провести путем одной или многократной посадки опытного растения на пень и последующего отбора мутантных порослевин, черенкования отдельных частей растения, прививки черенков и почек, микроклонального размножения (Котов, 1997).

Для получения мутанта  лиственницы сибирской следует  взять семена в количестве 50000 шт. и обработать рентгеновым излучением 4000 рентген. В результате облучение  половина семян погибла, остальные 25000 семян высеивают и ухаживают  за ними до самой смерти. Лучшие мутанты  в количестве 5000 шт. отбирают и размножают.

 

.4 Полиплоидия

 

Полиплоидией называется биологическое явление, характеризующееся  нетипичным числом хромосом в клетках. Растения с нетипичным числом хромосом в клетках называются полиплоидами. Они подразделяются на эуплоиды и анэуплоиды. Эуплоиды - это растения с числом хромосом, кратным основному (гаплоидному) набору. Если, например, у березы основное число хромосом равно 14, то типичными являются гаметы с 14, а соматические клетки с 28 хромосомами. Гаметы с 28, 42, 56 хромосомами будут нетипичными, полиплоидными или нередуцированными. Соматические клетки с 14 хромосомами называются гаплоидными, с 42 - трипловдными, 56 - тетраплоидными и т.д. Если в клетках увеличивается число геномов одного вида, растения называются автополиплоидами. Например, у осины есть автотриплоиды с тремя наборами геномов в клетках (Зn). Число хромосом в них 57, так как в геноме 19 хромосом. Если растения представляют собой гибриды между двумя видами и в клетках содержится не по одному геному каждого вида, а по крайней мере по два генома хотя бы одного вида, они называются аллополиплоидами. Например, среди растений тополя сереющего встречаются триплоиды. В клетках таких растений содержится по три генома, один из которых представлен геномом осины, а два - геномом тополя белого или наоборот.

Растения, в клетках которых  содержится число хромосом некратное  основному (гаплоидному), называются анэуплоидами. Например, вяз мелколистный имеет 14 хромосом в основном наборе. В степях Северного Казахстана обнаружены растения с 29 хромосомами в соматических клетках. Они имели два набора хромосом (2п=28) и одну добавочную хромосому.

Полиплоиды возникают разными путями. Один из них - нарушение сократительной функции ахроматинового веретена при митозе или мейозе. Вследствие этого хромосомы или хроматиды теряют ориентацию при расхождении к полюсам и в дочерние клетки может отойти число хромосом от 0 до 2п независимо от способа деления (митоз или мейоз), от стадии формирования спор и гамет. Клетки с несбалансированным числом хромосом (не кратным основному) характеризуются слабой жизнеспособностью.

В природе встречаются  такие деления, как кариокинез без  цитокинеза и удвоение хромосом без  последующего деления ядра (эндомитоз). В обоих случаях возникают  полиплоидные клетки.

Полиплоиды могут быть и комбинативного происхождения, когда зигота образуется от слияния гамет с разным набором геномов. Слияние гаплоидной и диплоидной гамет дает триплоидную зиготу, двух диплоидных - тетраплоидную и т.п.

Анэуплоиды возникают, как правило, вследствие воздействия на растения мутагенов. Например, в процессе репарации разорванных хромосом возникают ацентрические и дицентрические хромосомы. Первые образуются при объединении фрагментов, не имеющих центромеры. При делении клетки такая хромосома теряется. Дицентрические хромосомы возникают при срастании двух фрагментов с центромерами, которые образуют в анафазе так называемые мосты и далее или снова разрываются, или превращаются в кольцевые хромосомы, которые в клетке не элиминируются (Котов, 1997).

Для получения полиплоида лиственницы сибирской рекомендуется взять 20000 семян, произвести намачивание семян в 0,1%-ном растворе колхицина. Продолжительность действия 18 часов. После этого промывают проточной водой. Затем высеивают, после появления всходов обследуют на появление полиплоидов. Полиплоиды оставляют на контроль, а остальные оставляют и сравнивают с контролем.

 

2.5 Генная инженерия

 

За последние 10-15 лет были созданы принципиально новые  методы манипулирования с нуклеиновыми кислотами in vitro, на основе которых зародился и бурно развивается новый раздел молекулярной биологии и генетики - генная инженерия. Принципиальное отличие генной инженерии от использовавшихся ранее традиционных приемов изменения генотипа (например, создания полиплоидных форм растений) состоит в том, что она дает возможность конструировать функционально активные генетические структуры in vitro в форме рекомбинантных ДНК. Понятия «генная» и «генетическая» инженерия часто употребляют как синонимы, хотя последнее является более широким и включает манипулирование не только отдельными генами, но и с более крупными частями генома. Работа по переделке генотипа животных или растений с помощью скрещиваний ограничены пределами вида либо близких в видовом отношении форм. Напротив, генная инженерия, как будет показано ниже, стирает межвидовые барьеры, обеспечивая возможность создания организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная, инженерия представляет собой совокупность методов, позволяющих не только получать рекомбинантные ДНК из фрагментов геномов разных организмов, но и вводить такие рекомбинантные молекулы в клетку, создавая условия для экспрессии в ней введенных, часто совершенно чужеродных генов. Таким образом, в этом случае исследователь оперирует непосредственно с генами, причем их перенос может не зависеть от таксономического родства используемых организмов. Эта особенность генной инженерии представляет ее главное отличие от ранее использовавшихся приемов изменения генотипа.

Первенствующую роль в  формировании генной инженерии сыграла  генетика микроорганизмов, идеи и методы, разработанные молекулярной генетикой  и химией нуклеиновых кислот.

Выполнение любой генно-инженерной программы включает необходимость  получения фрагментов ДНК, несущих  нужный ген, объединение их in vitro с век-торными молекулами, способными обеспечить доставку гена в организм реципиента, создание условий для стабильного наследования и эффективной экспрессии перенесенного гена. Осуществление такой работы определяется крупными достижениями в области генетики и химии нуклеиновых кислот. К важнейшим из них относятся: 1) открытие явления рестрикции-модификации ДНК, в результате которого были выделены необходимые ферменты - рестриктазы для получения специфичных фрагментов ДНК; 2) создание методов химического и химико-ферментативного синтеза генов; 3) выявление векторных молекул ДНК, способных перенести в клетку чужеродную ДНК и обеспечить там экспрессию, соответствующих генов; 4) разработка методов объединения фрагментов ДНК из разных источников; 5) разработка методов трансформации у различных организмов и отбора клонов, несущих рекомбинантные ДНК. Совокупность этих достижений и составляет сущность методологии генной инженерии.

Не менее важное значение имеет генная инженерия в качестве мощного инструмента фундаментальны.х исследований. С ее помощью изучают строение различных геномов, отдельных генов и кодируемых ими продуктов. Генная инженерия помогла раскрыть экзонинтронную организацию эукариотических генов, позволяла понять суть явления непостоянства генома, связанного с присутствием мигрирующих генетических элементов у про- и эукариот, открыла принципиально новые возможности для изучения молекулярных основ онтогенеза, наследственных заболеваний, эволюционного происхождения различных организмов. В значительной мере этим успехам генной инженерии способствовало создание банков (или библиотек) генов отдельных организмов, резко облегчающих стратегию поиска индивидуальных генов, исследование их структуры и функции. Получение танков генов включает выделение тотальной ДНК, фрагментацию ее с помощью рестриктаз, присоединение полученных фрагментов к векторным молекулам (плазмидного или фагового происхождения) и введение рекомбинантных ДНК в реципиентные бактерии. Эта техника позволяет получить набор клонов бактерий или щтоков гибридных фагов, различающихся по включенным фрагментам ДНК. Необходимые исследователю гены отбирают из таких банков с помощью специально разработанных генетических, биохимических, радиоизотопных и иммунологических методов. Потенциальные возможности генной инженерии действительно очень велики, и их реализация в полной мере дело сегодняшнего дня и ближайшего будущего (Котов, 1997).

Информация о работе Селекция лиственницы сибирской и организация ПЛСБ в Оленгуйском лесхозе