Закачивания скважин

Автор работы: Пользователь скрыл имя, 26 Ноября 2014 в 13:01, курсовая работа

Описание работы

Закачивание является одной из наиболее ответственных стадий в строительстве скважин. Именно цементирование, вторичное вскрытие продуктивных пластов, освоение во многом закладывают будущий дебит скважины. При проведении этих работ необходимо принимать все возможные меры для повышения качества заканчивания скважин.
Материалом для этого курсового проекта послужили данные производственной практики, пройденной летом 2002 года в ЭГЭБ №1 ООО «ЛУКойл-Бурение». Районом деятельности предприятия является площадь в районе города Когалым Ханты-Мансийского АО.

Содержание работы

ВВЕДЕНИЕ..............................................................................................................3
1. ГЕОЛОГИЧЕСКАЯ часть..................................................................................4
2. ОБОСНОВАНИЕ СПОСОБА ВХОЖДЕНИЯ В ПРОДУКТИВНЫЙ ПЛАСТ И КОНСТРУКЦИИ СКВАЖИНЫ..........................................................7
3. РАСЧЕТ ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ...........................................11
4. ОСНАСТКА ОБСАДНЫХ КОЛОНН.............................................................14
5. СПУСК ОБСАДНЫХ КОЛОНН......................................................................15
6. ОБОСНОВАНИЕ СПОСОБА ЦЕМЕНТИРОВАНИЯ...................................18
7. ОПРЕДЕЛЕНИЕ ОБЪЕМОВ ТАМПОНАЖНЫХ РАСТВОРОВ ДЛЯ ЦЕМЕНТИРОВАНИЯ ЭКСПЛАТАЦИОННОЙ КОЛОННЫ..........................19
8. ОХРАНО ТРУДА, ОКРУЖАЮЩИХ СРЕДЫ И ТБ И ПРИ ЗАКАНЧИВАНИИ СКВАЖИН...........................................................................23
9. ПРИЧИНЫ ВЫХОДА КРЕПИ СКВАЖИН ИЗ СТРОЯ. ВИДЫ РЕМОНТОВ...........................................................................................................25
10 АНАЛИЗ КАЧЕСТВА ЦЕМЕНТИРОВАНИЯ СКВАЖИН.........................29
11. МЕТОДИКА ОЦЕНКИ КАЧЕСТВА ЦЕМЕНТИРОВАНИЯ.....................33
12. МЕРОПРИЯТИЯ ПО ПОВЫШЕНИЮ КАЧЕСТВА КРЕПИ....................34
СПИСОК ЛИТЕРАТУРЫ.....................................................................................37

Файлы: 1 файл

СКВАЖИН.doc

— 836.00 Кб (Скачать файл)

 

По результатам расчетов строится совмещенный график безразмерных давлений.

Рис 1. График безразмерных давлений.

Как видно из рис. 1. интервалов, несовместимых по условиям бурения в разрезе скважины нет.

Построим график распределения давлений в скважине при полном замещении бурового раствора пластовым флюидом. Для построения воспользуемся значениями РПОГЛ из

                                                                    (4)

где rН – плотность пластовой нефти, rН=790 кг/м3;

РПЛ – пластовое давление, РПЛ=25 МПа.

Подставим значения z в выражение (4), и получим две точки для построения графика:

 

1.  z=2535 м: ;

2.  z=0 м: .

То есть при заполнении скважины пластовым флюидом она будет до определенного уровня заполнена нефтью, найдем этот уровень подставив значение РНАС в выражение (4) получим:

 (от забоя)                              (5)

Скважина до глубины LН=823,8 м заполнена нефтью, а выше свободным газом. Пересчитаем давление на устье по формуле:

                                                                                       (6)

где РПЛ - пластовое давление, в данном случае РПЛ = РНАС=11,6 МПа;

s - эмпирический коэффициент.

Коэффициент s рассчитывается по формуле:  

                                                                          (7)

где  - относительная плотность попутного газа по воздуху, ;

L – глубина скважины, в данном  случае L=LН=823,8 м;

z – расчетная глубина, при пересчете  на устье z=0 м.

 

 

 

Рис.2. График распределения давлений в скважине при полном замещении бурового раствора пластовым флюидом.

Согласно рис. 2 достаточно двух обсадных колонн, такая конструкция обеспечит достаточную надежность и минимальную стоимость скважины.

Верхние неустойчивые отложения перекроем путем спуска кондуктора до глубины 750 м . При данной глубине спуска, обеспечивается экологическая безопасность на случай нефтегазопроявлениия с 5 % запасом по давлению (kКОНД).

 

.

 

Далее ствол обсаживается эксплуатационной колонной до глубины 2575 м (на 5 м ниже подошвы Мегионской свиты).

Как правило, заказчик (ТПП «Когалымнефтегаз») требует обсаживать скважину эксплуатационной колонной с наружным диаметром 146 мм. Исходя из этого условия, рассчитаем диаметры долот для бурения скважины, а также диаметр кондуктора.

Диаметр долота  для бурения под эксплуатационную колонну рассчитывается по формуле:

                                                                          (8)

где -диаметр муфт эксплуатационной колонны, =166 мм;

d-зазор между муфтой и стенкой  скважины d=5-40 мм.

Определим внутренний диаметр промежуточной колонны  (кондуктора)по формуле:

                                                                               (9)

где d-зазор между долотом и стенкой кондуктора, d=3-5 мм.

.

То есть, для крепления верхних неустойчивых отложений (кондуктора) допускается применение труб диаметром 244,5 мм и толщиной стенки 8,9-10 мм.

Диаметр долота для бурения под кондуктор рассчитывается по формуле аналогичной формуле (4)

 

Определим глубину спуска кондуктора по стволу (длину кондуктора):

aa                                                          (10)

где l1, l2, h1, h2 –длины по стволу и глубины по вертикали соответствующих участков профиля; a=16,84 -максимальный зенитный угол (на участке стабилизации)

 

 

 l1=90; l2=147;h1=90;h2=144,7; 

 

hконд- глубина спуска кондуктора по вертикали, hконд=750 м.

 

 

В кондукторе используем обсадные трубы с треугольной резьбой 244,5´8,9-Д-ГОСТ-623-80. Практика показывает, что данные обсадные трубы выдерживают необходимые нагрузки.

Принимаем, что башмак эксплуатационной колонны будет спущен на глубину, 2565 м (10 м до забоя скважины). Тогда длина эксплуатационной колонны будет

 

 

 

 

 

 

 

 

3. РАСЧЕТ ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ

 

Расчёт наружных давлений

До затвердевания цементного раствора:

z=0:

z=2205 м:

z=2575 м:

После затвердевания цементного раствора:

z=0:

z=2205 м:

где rПОР - плотность поровой жидкости цементного камня;

z=2575 м:

Расчёт внутренних давлений

При ликвидации открытого фонтанирования с закрытым устьем:

z=0:  

z=824 м:  

z=2205 м:

z=2575 м:

При опрессовке (колонна опрессовывается после получения момента «стоп»):

z=0:  (нормативная величина)

z=2205 м:

z=2575 м:

При продавке:

z=0:

z=2205 м:

z=2575 м:

Расчёт наружных избыточных давлений

Максимальные наружные избыточные давления возникают при окончании продавки цементного раствора.

z=0:

z=2205 м:

z=2575 м:

 

Расчёт внутренних избыточных давлений:

Максимальные внутренние избыточные давления возникают при опрессовке колонны после ОЗЦ, коэффициент облегчения k=0,25 [2, стр. 15]т.е. (1-k)=0,75.

z=0:

z=2205 м:

z=2575 м:

По результатам расчетов строится совмещенный график внутренних и наружных избыточных давлений.

Выбор типа труб

Определим интенсивность искривления a0 по формуле

                                                                                                   (11)

где R1–радиус искривления ствола скважины в интервале набора зенитного угла, R1=500 м.

 

Коэффициент запаса прочности на растяжение n3=1,15 [2, стр. 50] т.к. планируется применение труб ОТТМ (требование заказчика).

Коэффициент запаса прочности на внутреннее избыточное давление n2=1,15 [2, стр. 21]

Коэффициент запаса прочности на наружное избыточное давление n1=1,1 для интервала продуктивного пласта, n1=1 для остальных интервалов [2, стр. 20].

1

Рис. 3. Совмещенный график внутренних и наружных избыточных давлений в эксплуатационной колонне

РНИ – наружные избыточные давления при окончании продавки цементного расвора;

РВИ – внутренние избыточные давления при опрессовке эксплуатационной колонны.

Так как максимальными являются внутренние избыточные давления, то расчёт будем вести по ним. При расчете предположим, что колонна имеет одну секцию.

Расчёт на внутреннее давление:

Рассчитаем обсадную колонну, для расчета первой секции используем трубы ОТТМ 146´7,0-Д-ГОСТ 632-80.

[РВИ]=22,4 МПа; [Q]=1156 кН; [РНИ]=31,8 МПа; [QСТР]=931 кН; q=0,243 кН

С учётом коэффициента запаса прочности на внутреннее давление n2, обсадная колонна должна выдерживать давление:

трубы ОТТМ 146´7,0-Д имеют PВКР=22,4 МПа т.е.

QЭК=LЭК×qЭК=2665×0,243=647,6 кН

Расчет совместного действия растягивающих нагрузок и внутреннего давления

Рассчитаем уточненное значение n2

Спускаем эксплуатационную колонну, имеющую одну секцию. Результаты расчетов сведем в таблицу.

 

Таблица №8

Результаты расчета эксплуатационной колонны

№ секции

L, м

qi, кН/м

Qi, кН

n1

n2

n3

1

2665

0,243

647,6

3,7

1,99

1,78


 

 

 

 

 

 

4. ОСНАСТКА ОБСАДНЫХ  КОЛОНН

 

Кондуктор

Кондуктор цементируется до устья прямым одноступенчатым цементированием.

Оснастка колонны:

-  башмак БК – 245;

-  обратный клапан ЦКОД-245 на расстоянии 5 м от башмака;

-  “стоп”- кольцо на расстоянии 10 м от башмака;

-  центраторы ЦЦ-245/295;

-  пробка продавочная ПП 219/245.

Эксплуатационная колонна

Эксплуатационная колонна цементируется прямым способом в одну ступени до устья.

Оснастка колонны:

-  башмак БК-146;

-  обратный клапан ЦКОД-146 на расстоянии 5 м от башмака;

-  “стоп”- кольцо на расстоянии 10 м от башмака;

-  центраторы ЦЦ-2-146/216 в интервале 300-750 м по одному центратору на трубу;

-  скребки СК 146/216 в и нтервале продуктивного пласта из расчета два центратора – один скребок.

-  турбулизаторы ЦТ 146/211 в интервале продуктивного пласта по две штуки на трубу.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. СПУСК ОБСАДНЫХ КОЛОНН

 

Обоснование режима спуска обсадных колонн

Предельная скорость спуска обсадной колонны определяется из соотношения

Рс = Ргст +Ргд £ Ргр,

где

Ргст – гидростатическое давление столба промывочной жидкости на глубине наиболее слабого пласта (пласта с наименьшим индексом давления начала поглощения или гидроразрыва);

Ргд – гидродинамическое давление в скважине при спуске колонны труб с закрытым нижним концом;

Ргр – давление начала поглощения (гидроразрыва) наиболее слабого пласта.

Гидродинамическое давление при спуске находится при турбулентном течении вытесняемой жидкости по формуле

,

 - при ламинарном течении.

В формулах  - соответственно длина и гидравлический диаметр кольцевого пространства на i- том участке; Ui- скорость течения жидкости на i – том участке; n – количество участков кольцевого пространства различного размера от устья до наиболее слабого пласта, t0 – динамическое напряжение сдвига, l – коэффициент гидравлических сопротивлений.

Обоснование режима спуска эксплуатационной колонны

Наиболее слабый пласт  на забое скважины (Мегионская свита).

Зададимся скоростью спуска U=0,5 м/c, тогда скорость движения вытесняемой жидкости Uж будет равна:

 

где

DС, DТ – соответственно диаметр скважины и наружный диаметр обсадных труб;

K – коэффициент, учитывающий увлечение  части жидкости стенками колонны  труб. Для практических расчётов  можно принять K=0,5.

Пусть режим течения вытесняемой жидкости в интервале установки техколонны будет ламинарный, тогда:

Критическая скорость течения жидкости при смене режимов определяется по следующей формуле:

 где

Тогда  

Скорость течения жидкости UЖ<UКР, то режим ламинарный.

 где

Получаем:

   

Гидродинамические давления на данном участке составят:

Результаты аналогичных расчётов для различных скоростей спуска яяэксплуатационной колонны приведены в таблице 9.

Таблица №9

Зависимость Pгд от скорости спуска эксплуатационной колонны.

Uсп, м/с

Uж, м/с

Uкр, м/с

Sen

Re*

Pгд, Мпа

0,5

0,467

1,15

15

0,65

   

1,46

1

0,91

1,15

   

4325

0,0252

1,95

2

1,83

1,15

   

11712

0,0223

4,8

3

2,74

1,15

   

21814

0,0211

9,06

4

3,65

1,15

   

30683

0,0202

17,15

Информация о работе Закачивания скважин