Анкерная крепь, ее область применения и составные части

Автор работы: Пользователь скрыл имя, 30 Января 2015 в 08:35, реферат

Описание работы

АНКЕРНАЯ КРЕПЬ (а. anchorage, roof bolting; н. Ankerausbau, Gebirgsanker, Anker; ф. boulonnage, ancrage; и. anclaje) — горная крепь, основной элемент которой металлический, железобетонный, полимерный или деревянный стержень (анкер), закреплённый в шпуре (скважине).

Содержание работы

Анкерная крепь, ее область применения и составные части…………...3
Взрывчатые вещества и их классификация………………………………6
Схемы и способы проведения тупиковых выработок…………………...11
Список используемой литературы……………

Файлы: 1 файл

Содержание.docx

— 42.15 Кб (Скачать файл)

Содержание

  1. Анкерная  крепь, ее область применения и составные части…………...3
  2. Взрывчатые вещества и их классификация………………………………6
  3. Схемы и способы проведения  тупиковых выработок…………………...11

Список используемой литературы………………………………………...18

Приложение………………………………………………………………..19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Анкерная  крепь, ее область применения и составные части

АНКЕРНАЯ КРЕПЬ (а. anchorage, roof bolting; н. Ankerausbau, Gebirgsanker, Anker; ф. boulonnage, ancrage; и. anclaje) — горная крепь, основной элемент которой металлический, железобетонный, полимерный или деревянный стержень (анкер), закреплённый в шпуре (скважине). 

Предназначена для упрочнения массива горных пород и повышения устойчивости его обнажений путём скрепления различных по прочности породных слоев. Первые сведения о применении анкеров для крепления горных выработок относятся к 1900, когда на угольной шахте в Верхней Силезии были использованы деревянные клинощелевые анкеры. Опыты с применением стальных анкеров для крепления штреков проведены в Нидерландах, Германии, Великобритании, США ещё перед 1-й мировой войной 1914-18. Промышленное использование анкерной крепи началось после 2-й мировой войны 1939-45. При подземной разработке месторождений полезных ископаемых анкерной крепи применяют для крепления капитальных, подготовительных и очистных горных выработок (независимо от формы, поперечного сечения и срока службы) самостоятельно или в сочетании с рамными крепями; используют также как средство борьбы с пучением пород почвы, укрепления угольного или породного массива, который впоследствии должен разрушаться комбайном (полимерная и деревянная анкерная крепи), для предотвращения отжима угля в очистных забоях, подвески труб различного назначения и закрепления горно-шахтного оборудования. Различают анкерные крепи с закреплением анкеров в донной части шпура, скважины (точечное закрепление) с помощью различных механических замков и по всей длине или значительной её части (сплошное закрепление) химическими составами на основе синтетических смол, цементными (песчано-цементными) растворами, с помощью энергии взрыва. В CCCP распространение получила анкерная крепь с точечным закреплением анкеров (типа ШК, AK-8, АД-1, AP-2, ЭС-2), которую целесообразно применять в породах с прочностью на одноосное сжатие не ниже 29 МПа. Она состоит из металлического анкера (Приложение: Рисунок №1) длиной 0,8-2,5 метров и диаметром 20 мм, имеющего на одном конце (в замковой части) клиновидную головку, на другом — резьбу, двух полумуфт, опорной плиты и натяжной гайки.

Анкерные крепи со сплошным закреплением анкеров целесообразно применять в слабых неустойчивых горных породах прочностью на одноосное сжатие менее 29 МПа; не исключается применение и в более крепких породах. При закреплении анкеров химическим составом (Приложение: Рисунок №2) в скважину вводится необходимое количество ампул с химическим закрепителем (смола и отвердитель), а затем стержень, вращаемый с помощью сверла или перфоратора и подаваемый ко дну скважины.

Оболочка ампул разрывается, их содержимое перемешивается. После затвердения химического состава и закрепления анкера устанавливают опорную плиту, создают предварительное натяжение гайкой. При закреплении анкеров (железобетонных) цементными (песчано-цементными) растворами последние подаются в скважину в ампулах или специальным насосом. Анкеры, закрепляемые энергией взрыва (в стадии промышленного освоения), представляют собой металлическую трубу, заполненную взрывчатым веществом. Помещённый в скважину трубчатый анкер после взрывания заряда взрывчатых веществ развальцовывается, принимая форму скважины, и прочно закрепляется. Несущая способность анкера: с точечным закреплением 49-69 кН, со сплошным — 147-196 кН. Применение анкерной крепи позволяет в 2- 2,5 раза снизить трудоёмкость работ по креплению (по сравнению с рамными крепями); значительно снижается расход крепёжных материалов. В подземном транспорте и гидротехническом строительстве анкерная крепь служит для стабилизации массива горных пород в процессе строительства, а иногда и эксплуатации подземного сооружения. Применение анкерной крепи возможно как в крепких скальных породах, так и нарушенных полускальных при достаточно ровном контуре выработки. Анкерные крепи можно использовать в сочетании с другими видами крепи: полигональной, арочной или из набрызг-бетона. В анкерной крепи используют металлические анкеры с замковыми устройствами (клинощелевые и распорные), железобетонные (набивные, нагнетаемые, "перфо") и полимербетонные, закреплённые по всей глубине шпура (Приложение: Рисунок №3, а, б, в).  

В выработках большого поперечного сечения устанавливают предварительно напрягаемые железобетонные анкеры (Приложение: Рисунок №3, г), которые вступают во взаимодействие с массивом породы до проявления в ней деформаций. Железобетонные и полимербетонные анкеры могут входить в состав постоянной крепи подземных выработок. Анкеры располагают преимущественно в сводовой части выработки: в радиальном направлении в однородных трещиноватых породах, вкрест простиранию пластов и трещин в слоистых породах; шаг установки вдоль и поперёк тоннеля одинаков. Во избежание местных вывалов породы между анкерами по контуру выработки подвешивают стальную сетку с ячейками 0,05х0,05, 0,1х0,1 м, а иногда устанавливают металлические подхваты. Длина ненапрягаемых анкеров 1,5-4 м, напрягаемых — 5-15 м. Несущая способность ненапрягаемых анкеров металлических 59-78 кН, железобетонных 98-118 кН, напрягаемых 294-980 кН и более. Основные преимущества анкерной крепи (по сравнению с арочной крепью): большие возможности механизации подземных работ, экономия (из расчёта на 1 м длины тоннеля) 300-1500 кг металла, 0,7-2,5 м3 древесины.

Анкерные крепи широко используется в зарубежных странах.

 

 

 

 

  1. Взрывчатые вещества и их классификация.

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (а. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) — химические соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) самораспространяющемуся химическому превращению с выделением тепла и образованием газообразных продуктов.  
Взрывчатыми могут быть вещества или смеси любого агрегатного состояния. Широкое применение в горном деле получили так называемые конденсированные взрывчатые вещества, которые характеризуются высокой объёмной концентрацией тепловой энергии. В отличие от обычных топлив, требующих для своего горения поступления извне газообразного кислорода, такие взрывчатые вещества выделяют тепло в результате внутримолекулярных процессов распада или реакций взаимодействия между составными частями смеси, продуктами их разложения или газификации. Специфический характер выделения тепловой энергии и преобразования её в кинетическую энергию продуктов взрыва и энергию ударной волны определяет основную область применения взрывчатых веществ как средства дробления и разрушения твёрдых сред (главным образом горных пород) и сооружений и перемещения раздробленной массы (см. Взрывная технология).  
В зависимости от характера внешнего воздействия химические превращения взрывчатых веществ происходят: при нагреве ниже температуры самовоспламенения (вспышки) — сравнительно медленное термическое разложение; при поджигании — горение с перемещением зоны реакции (пламени) по веществу с постоянной скоростью порядка 0,1-10 см/с; при ударно-волновом воздействии — детонация взрывчатых веществ.  
Классификация взрывчатых веществ. Имеется несколько признаков классификации взрывчатых веществ: по основным формам превращения, назначению и химическому составу. В зависимости от характера превращения в условиях эксплуатации взрывчатые вещества подразделяют на метательные (или пороха) и бризантные. Первые используют в режиме горения, например, в огнестрельном оружии и ракетных двигателях, вторые — в режиме детонации, например, в боеприпасах и на взрывных работах. Бризантные взрывчатые вещества, применяемые в промышленности, называются Промышленными взрывчатыми веществами. Обычно к собственно взрывчатым относят только бризантные взрывчатые вещества. В химическом отношении перечисленные классы могут комплектоваться одними и теми же соединениями и веществами, но по-разному обработанными или взятыми при смешении в разном соотношении.  
По восприимчивости к внешним воздействиям бризантные взрывчатые вещества подразделяют на первичные и вторичные. К первичным относят взрывчатые вещества, способные взрываться в небольшой массе при поджигании (быстрый переход горения в детонацию). Они также значительно более чувствительны к механическим воздействиям, чем вторичные. Детонацию вторичных взрывчатых веществ легче всего вызвать (инициировать) ударно-волновым воздействием, причём давление в инициирующей ударной волне должно быть порядка несколько тысяч или десятков тысяч МПа. Практически это осуществляют с помощью небольших масс первичных взрывчатых веществ, помещённых в капсюль-детонатор, детонация в которых возбуждается от луча огня и контактно передаётся вторичному взрывчатому веществу. Поэтому первичные взрывчатые вещества называются также инициирующими. Другие виды внешнего воздействия (поджигание, искра, удар, трение) лишь в особых и труднорегулируемых условиях приводят к детонации вторичных взрывчатых веществ. По этой причине широкое и целенаправленное использование бризантных взрывчатых веществ в режиме детонации в гражданской и военной взрывной технике было начато лишь после изобретения капсюля-детонатора как средства инициирования детонации во вторичных взрывчатых веществах.  
По химическому составу взрывчатые вещества подразделяют на индивидуальные соединения и взрывчатые смеси. В первых химические превращения при взрыве происходят в форме реакции мономолекулярного распада. Конечные продукты — устойчивые газообразные соединения, такие, как азот, окись и двуокись углерода, пары воды.  
Во взрывчатых смесях процесс превращения состоит из двух стадий: распада или газификации компонентов смеси и взаимодействия продуктов распада (газификации) между собой или с частицами неразлагающихся веществ (например, металлов). Наиболее распространённые вторичные индивидуальные взрывчатые вещества относятся к азотсодержащим ароматическим, алифатическим гетероциклическим органическим соединениям, в том числе нитросоединениям (тротил, тетрил, нитрометан), нитроаминам (гексоген, октоген), нитроэфирам (нитроглицерин, нитрогликоли, нитроклетчатка, тэн). Из неорганических соединений слабыми взрывчатыми свойствами обладает, например, аммиачная селитра.  
Многообразие взрывчатых смесей может быть сведено к двум основным типам: состоящие из окислителей и горючих, и смеси, в которой сочетание компонентов определяет эксплуатационные или технологические качества смеси. Смеси окислитель — горючее рассчитаны на то, что значительная часть тепловой энергии выделяется при взрыве в результате вторичных реакций окисления. В качестве компонентов этих смесей могут быть как взрывчатые, так и невзрывчатые соединения. Окислители, как правило, при разложении выделяют свободный кислород, который необходим для окисления (с выделением тепла) горючих веществ или продуктов их разложения (газификации). В некоторых смесях (например, содержащиеся в качестве горючего металлические порошки) в качестве окислителей могут быть также использованы вещества, выделяющие не кислород, а кислородсодержащие соединения (пары воды, углекислый газ). Эти газы реагируют с металлами с выделением тепла. Пример такой смеси — алюмотол.  
В качестве горючих применяют различного рода природные и синтетические органические вещества, которые при взрыве выделяют продукты неполного окисления (окись углерода) или горючие газы (водород, метан) и твёрдые вещества (сажу). Наиболее распространённым видом бризантных взрывчатых смесей первого типа являются взрывчатые вещества, содержащие в качестве окислителя нитрат аммония. В зависимости от вида горючего они, в свою очередь, подразделяются на аммониты, аммотолы и аммоналы. Менее распространены хлоратные и перхлоратные взрывчатые вещества, в состав которых в качестве окислителей входят хлорат калия и перхлорат аммония, оксиликвиты — смеси жидкого кислорода с пористым органическим поглотителем, смеси на основе других жидких окислителей. К взрывчатым смесям второго типа относятся смеси индивидуальных взрывчатых веществ, например динамиты; смеси тротила с гексогеном или тэном (пентолит), наиболее пригодные для изготовления шашек-детонаторов.  
В смеси обоих типов, кроме указанных компонентов, в зависимости от назначения взрывчатых веществ могут вводиться и другие вещества для придания взрывчатому веществу каких-либо эксплуатационных свойств, например, сенсибилизаторы, повышающие восприимчивость к средствам инициирования, или, напротив, флегматизаторы, снижающие чувствительность к внешним воздействиям; гидрофобные добавки — для придания взрывчатому веществу водостойкости; пластификаторы, соли-пламегасители — для придания предохранительных свойств (см. Предохранительные взрывчатые вещества). Основные эксплуатационные характеристики взрывчатых веществ (детонационные и энергетические характеристики и физико-химические свойства взрывчатых веществ) зависят от рецептурного состава взрывчатых веществ и технологии изготовления.  
Детонационная характеристика взрывчатых веществ включает детонационную способность и восприимчивость к детонационному импульсу. От них зависят безотказность и надёжность взрывания. Для каждого взрывчатого вещества при данной плотности имеется такой критический диаметр заряда, при котором детонация устойчиво распространяется по всей длине заряда. Мерой восприимчивости взрывчатых веществ к детонационному импульсу служат критическое давление инициирующей волны и время его действия, т.е. величина минимального инициирующего импульса. Её часто выражают в единицах массы какого-либо инициирующего взрывчатого вещества или вторичного взрывчатого вещества с известными параметрами детонации. Детонация возбуждается не только при контактном подрыве инициирующего заряда. Она может передаваться и через инертные среды. Это имеет большое значение для шпуровых зарядов, состоящих из нескольких патронов, между которыми возникают перемычки из инертных материалов. Поэтому для патронированных взрывчатых веществ проверяется показатель передачи детонации на расстояние через различные среды (обычно через воздух).  
Энергетические характеристики взрывчатых веществ. Способность взрывчатых веществ при взрыве производить механическую работу определяется запасом энергии, высвобождаемой в виде тепла при взрывчатом превращении. Численно эта величина равна разности между теплотой образования продуктов взрыва и теплотой образования (энтальпией) самого взрывчатого вещества. Поэтому коэффициент преобразования тепловой энергии в работу у металлсодержащих и предохранительных взрывчатых веществ, образующих при взрыве твёрдые продукты (окислы металлов, соли-пламегасители) с высокой теплоёмкостью, ниже, чем у взрывчатых веществ, образующих только газообразные продукты. О способности взрывчатых веществ к местному дробящему или бризантному действию взрыва см. в ст. Бризантность взрывчатых веществ.  
Изменение свойств взрывчатых веществ может происходить в результате физико-химических процессов, влияния температуры, влажности, под воздействием нестойких примесей в составе взрывчатых веществ и др. В зависимости от вида укупорки устанавливают гарантийный срок хранения или использования взрывчатых веществ, в течение которого нормированные показатели взрывчатых веществ либо не должны изменяться, либо их изменение происходит в пределах установленного допуска.  
Основной показатель безопасности в обращении с взрывчатыми веществами — их чувствительность к механическим и тепловым воздействиям. Она обычно оценивается экспериментально в лабораторных условиях по специальным методикам. В связи с массовым внедрением механизированных способов перемещения больших масс сыпучих взрывчатых веществ к ним предъявляются требования минимальной электризации и низкой чувствительности к разряду статического электричества.  

3. Схемы и способы проведения  тупиковых выработок 
В процессе проведения все разведочные выработки по условиям проветривания относятся к тупиковым, т. е. в них исключается сквозное движение вентиляционной струи .В зависимости от длины или глубины выработок и с учетом конкретных горно-теологических и горно-технических условий вентиляция таких выработок осуществляется с помощью вентиляторов местного проветривания и вентиляционных труб, а в некоторых случаях путем использования турбулентной диффузии и продольных перегородок. 
За счет диффузии разрешается проветривание горизонтальных выработок протяженностью не более 10 м, а вертикальных - глубиной не более 5 м. 
Разведочные выработки нередко имеют значительную длину, измеряемую несколькими километрами. Проветривание таких протяженных выработок осуществляется с помощью вентиляторов местного проветриванияи трубопровода, прокладываемого по всей выработке, вспомогательной параллельной выработки и вентиляционных скважин (шурфов). Применение вентиляционных перегородок не нашло применения в практике разведочных работ, поскольку в этом случае увеличивается площадь поперечного сечения выработок, затрудняется транспортирование грузов, возникает необходимость в обеспечении хорошей герметизации перегородки для исключения утечек воздуха.

Нагнетательный способ проветривания

Этот способ имеет наибольшее распространение. Он особенно эффективен при длине (глубине) выработок до 300 м, и только этот способ применяется для проветривания выработок, опасных по взрывам газа или пыли. 
При нагнетательном способе свежий воздух подается по вентиляционному трубопроводу, прокладываемому по всей выработке, а загрязненный вытесняется непосредственно по выработке. В соответствии с ПБ трубопровод должен отставать от забоя в горизонтальной выработке не более чем на 8 м, а в вертикальной - не более чем на 5 м. Основным достоинством способа является то, что свежий воздух из трубопровода поступает непосредственно к забою, где работают люди. Трубопровод работает под избыточным внутренним давлением, поэтому при нагнетательном способе могут использоваться как жесткие, так и мягкие вентиляционные трубы. 
Дальнобойность струи воздуха, выходящего у забоя выработки из трубопровода, зависит от его скорости движения в трубопроводе и площади сечения выработки. Для увеличения дальнобойности струи воздуха целесообразно на конце трубопровода использовать конусную насадку. 
Нагнетательный вентилятор устанавливается на расстоянии не менее 10 м от устья проветриваемой выработки. Если это требование не соблюдать, то часть воздуха исходящей струи на устье выработки может снова попасть в вентилятор, и будет происходить рециркуляция. 
Если нагнетательный вентилятор устанавливается на сквозной струе основной выработки, то для исключения рециркуляции необходимо также, чтобы подача вентилятора не превышала 70% подачи воздуха по основной выработке за счет общешахтной депрессии. 
Недостатком нагнетательного способа является то, что удаляемые из призабойной части выработки газы, образующиеся при взрывных работах, распространяются по всей длине выработки. Это исключает выполнение каких-либо работ в выработке до окончания ее проветривания.

Всасывающий способ проветривания

При проветривании этим способом свежий воздух поступает непосредственно по выработке, а загрязненный удаляется по трубопроводу. 
Всасывающий способ целесообразен для проветривания протяженных выработок, поскольку независимо от длины выработка не загрязняется, за исключением призабойной части, ядовитыми продуктами взрыва. 
Основной недостаток способа заключается в том, что в ходе проветривания у забоя не происходит интенсивного перемешивания воздуха. Зона разрежения, из которой вентилятором засасывается воздух, имеет небольшую глубину. Вследствие этого у забоя могут образовываться области застоя с высокой концентрацией ядовитых газов. В связи с этим недостатком всасывающий способ не эффективен в выработках с большой площадью поперечного сечения. 
Кроме того, при всасывающем способе вентиляционный трубопровод на участке от забоя выработки до вентилятора работает под недостающим давлением. Следовательно, здесь исключается применение «мягких» труб. 
Способ нельзя применять в выработках, опасных по взрыву газа или пыли.

Комбинированный способ проветривания

При использовании этого способа по всей выработке прокладывается только трубопровод, по которому из забоя отсасывается загрязненный воздух, а в призабойной части - дополнительно трубопровод для подачи к забою свежего воздуха. Таким образом, в комбинированном способе сочетаются достоинства нагнетательного и всасывающего. 
Нагнетательный вентилятор устанавливается за пределами зоны, загрязняемой вредными газами и пылью при взрывных работах. Протяженность этой зоны определяется расчетом в зависимости от массы взрываемого взрывчатого вещества, его свойств и площади поперечного сечения выработки. В среднем эта величина составляет около 50 м. 
Комбинированный способ особенно целесообразен для проветривания протяженных выработок с большой площадью поперечного сечения. Однако, как и всасывающий, он не может применяться в выработках, опасных по взрыву газа или пыли.

Проветривание выработок с помощью скважин

При значительной длине выработок, сравнительно небольшом расстоянии до земной поверхности или при наличии выше расположенного разведочного горизонта на разведочной шахте целесообразно использовать для проветривания вентиляционные скважины. Предпочтение скважинному варианту проветривания отдается на основе технико-экономического сравнения этого способа с обычным при прокладке трубопровода по всей выработке. 
Применение скважин позволяет освободить выработку на основной ее длине от трубопровода. При бурении вентиляционных скважин можно получить дополнительную геологическую информацию о горных породах. 
Сами скважины, выполнившие функцию как вентиляционные, могут быть использованы для других технических целей - прокладки труб и кабелей, доставки длинномерных материалов и т. д. 
Скважины работают преимущественно во всасывающем режиме, а вентилятор устанавливается над устьем скважины. В соответствии с ПБ скорость движения воздуха по скважинам не ограничивается.

Информация о работе Анкерная крепь, ее область применения и составные части