Физика горных пород

Автор работы: Пользователь скрыл имя, 17 Января 2013 в 19:29, контрольная работа

Описание работы

Состав, строение, структура, текстура и условия залегания горных пород находятся в причинной зависимости от формирующих их геологических процессов, происходящих в определенных физико-химических условиях. Горные породы могут слагаться как одним минералом, так и их комплексом. В природе известно свыше 3000 минералов, однако число породообразующих минералов невелико (40-50). Реальные сочетания этих минералов определяются физико-химическими процессами породообразования и геохимическими законами распространения породообразующих элементов.

Содержание работы

1. Строение и состав минералов и горных пород
1.1. Понятие о горной породе, её составе, структуре и текстуре
1.2. Понятие о минерале, его составе, структуре и текстуре
2. Упругие и пластические свойства пород.
2.2. Понятие упругости пород
2.3. Понятие пластичности пород
3. Дефекты в породах, их роль и влияние на прочность горных пород
3.1. Напряжение в горных породах
3.2. Дефекты в горных породах
4. Диэлектрическая проницаемость пород.
4.1. Диэлектрическая проницаемость горных пород и принцип её измерения
4.2. Поляризация пород
Список литературы

Файлы: 1 файл

Министерство Образования и Науки Республики Казахстан.docx

— 163.35 Кб (Скачать файл)

Электронная поляризация.

Электронная поляризация РЭ возникает при воздействии внешнего поля в атомах в результате смещения электронных орбит относительно положительно заряженных ядер.

Возникший электрический  диполь может быть охарактеризован  дипольным моментом — вектором, направленным от отрицательного заряда диполя к положительному и численно равным произведению заряда полюса диполя Q на расстояние между полюсами : 
 

 
Электронной поляризацией обладают все атомы и молекулы; она является наиболее быстрым видом поляризации (возникает, за время 10-15 сек).

Ионная поляризация.

Ионная поляризация Ри образуется за счет смещения в электрическом поле ионов или частей кристаллических решеток с гомеополярной (ковалентной) связью. При этом под действием напряжения сдвигаются уже не электроны, а положительные и отрицательные ионы. Величина ионной поляризации также прямо пропорциональна величине внешнего поля, скорость ее установления несколько меньше, чем электронной, и составляет 10-14 - 10-12 сек.

Дипольная ориентационная поляризация.

Дипольная ориентационная поляризация РД (рис. 54, II) наблюдается при наличии в породах полярных связей ионов; в этом случае каждая молекула с момента своего возникновения уже имеет некоторый дипольный момент, не зависящий от напряженности внешнего поля. Однако в некотором объеме породы из-за хаотического расположения молекул суммарный дипольный момент при отсутствии внешнего поля равен нулю.

Если такую породу внести во внешнее электрическое поле, то диполи будут ориентироваться по силовым линиям внешнего поля и при этом будет поляризоваться весь объем породы. У жидкостей, где связи между отдельными молекулами слабы, ориентация диполей будет почти полной и слабо зависящей от напряженности электрического поля.

В твердых горных породах  взаимные связи между молекулами не позволяют ориентироваться им точно по силовым линиям поля —  диполи только поворачиваются на некоторый  угол, зависящий от сил связей в  данной породе и напряженности внешнего поля. Очевидно, что при увеличении угол поворота диполей до некоторой степени возрастает (квазиупругая поляризация).

При повышении температуры  увеличивается колебание молекул  и уменьшается число ориентированных  диполей. Дипольная ориентационная поляризация завершается в течение 10-10 —10-7 сек.

Макроструктурная поляризация.

Макроструктурная (объемная) поляризация Рм возникает в многофазной системе, состоящей из кристаллов, обладающих различными электрическими свойствами, и пустот, заполненных жидкостью и воздухом (рис. 54, III).

При внесении породы в электрическое ноле свободные электроны и ионы, содержащиеся в проводящих и полупроводящих включениях, начинают перемещаться в пределах каждого включения. В результате этого каждое включение приобретает дипольный момент и ведет себя подобно большой молекуле. Это явление обусловлено электронным или ионным током проводимости в пределах каждого включения, но так как передвижение зарядов ограничено размерами включения, то конечный результат подобен явлению поляризации.

Время завершения макроструктурной поляризации составляет 10-8 — 10-3 сек.

Поскольку время установления дипольной и макроструктурной поляризации  пород сравнимо с частотой применяемых  на практике электромагнитных полей, то эти два вида поляризации называются релаксационными или медленными, в отличие от мгновенного смещения электронов и ионов.

В горных породах имеет  место также медленная электрохимическая поляризация, причиной которой являются следующие процессы, возникающие при прохождении тока через многофазные среды: 
- окислительно-восстановительные процессы (характерны для сульфидов, окислов и высококарбонизированных каменных углей); 
- процессы, характеризующиеся появлением в местах выхода и входа тока продуктов электролиза, газов; 
- электроосмос, т. е. перемещение молекул жидкости, имеющих заряд одного знака, к электроду противоположной полярности; 
- электрофорез — смещение твердых частиц, имеющих обратный знак заряда, к другому электроду; 
- перераспределение концентрации растворов — например, в результате прохождения тока через кварцевый песок, насыщенный раствором NaС1, на положительном электроде появляется повышенная концентрация раствора.

Такие процессы бывают как обратимые, так и необратимые.

Электрохимическая поляризация  происходит значительно медленнее, чем другие виды поляризации. У углей  она достигает наибольшего значения в течение нескольких десятков минут.

При отключении напряжения в образце возникает ток деполяризации, направленный против приложенной разности потенциалов. Наиболее активными в этом отношении минералами являются пирит, пирротин, халькопирит и графит. Активны также магнетит, гематит и другие окислы, имеющие металлическую проводимость.

Под воздействием электрического поля в породах возникает явление  электрострикции. Оно заключается в деформировании (подобно всестороннему сжатию) диэлектриков электрическим полем и присуще всем породам. Причинами электрострикции являются, с одной стороны, давление на породу заряженных частиц, создающих поле и притягивающихся друг к другу, с другой стороны — смещение ионов и электронов в породе, вызываемое полем.

Механические напряжения σ, возникающие в результате электрострикции, прямо пропорциональны квадрату напряженности электрического поля. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы:

Pжевский B. B., Горные науки. 
В. В. Ржевский, Г. Я. Новик., Основы физики горных пород.

Добрынин В.М., Петрофизика (Физика горных пород). /Б.Ю. Вендельштейн, Д.А. Кожевников// - М.: Изд. Нефть и газ, 2004.-368 с. 
Зинченко В.С. Петрофизические основы гидрогеологической и инженерно-геологической интерпретации геофизических данных: Учебное пособие для студентов ВУЗов. – М.: Тверь: Изд. АИС, 2005.-392 с. 
Росбах А.В. Физика горных пород (физико-механические свойства). /А.В. Росбах, А.Н. Холодилов, Г.И. Коршунов//: Учебное пособие. – СПб.: Изд. МАНЭБ. –2009, 272 с.

 

 

 


Информация о работе Физика горных пород