Геохимия грунтовых вод городских территорий

Автор работы: Пользователь скрыл имя, 02 Июня 2013 в 13:51, курсовая работа

Описание работы

Целью данной работы является изучение и анализ геохимии грунтовых вод городских территорий.
Задачи работы:
Изучить состав, особенности и общие характеристики грунтовых вод.
Оценить роль грунтовых вод при строительстве зданий и объектов.
Изучить проблемы минерально-сырьевой базы питьевых подземных вод Российской Федерации
Проанализировать основные методы очистки грунтовых вод

Содержание работы

Введение………………………………………………………………...................3
1.Условия залегания подземных вод в земной коре…………………………….5
1.2.Режим грунтовых вод. Зависимость колебаний уровня от климата………..9
1.3.Грунтовые и межпластовые безнапорные воды……………………………12
2.Состав грунтовых вод…………………………………………………………..15
2.1.Общая минерализация……………………………………………………….19
2.2.Химический состав…………………………………………………………..19
2.3.Коэффициент фильтрации…………………………………………………..22
3.Защита зданий от грунтовых вод……………………………………………..26
3.1.Отвод грунтовых вод в бесподвальных зданиях………………………..…26
3.2.Отвод грунтовых вод в зданиях с подвалами………………………………27
3.3.Карты гидроизогипс………………………………………………………….28
3.4.Дренаж………………………………………………………………………..29
4.Питьевые и технические подземные воды……………………………………31
4.1.Проблемы минерально-сырьевой базы питьевых подземных вод Российской Федерации………………………………………………………....41
5.Ландшафтные проблемы городов……………………………………………..45
5.1.Причины загрязнения грунтовых вод……………………………………….47
5.2.Опасность ядохимикатов…………………………………………………….49
5.3.Восстановление качества грунтовых вод…………………………………...51
Заключение ………………………………………………………………………54
Список использованной литературы …………………………………………...56

Файлы: 1 файл

Курсовая работа.docx

— 904.11 Кб (Скачать файл)

Общая жесткость ЖО определяется как сумма мг-экв ионов Са2+ и Mg2+ в 1 дм³ воды и слагается из карбонатной ЖК и некарбонатной ЖНК жесткости:

 

ЖО = ЖК + ЖНК,

ЖО = Ca2+ + Mg2+.


Оценка агрессивности  подземных вод. Агрессивность воды связана с присутствием в ней ионов водорода, свободного диоксида углерода, сульфатов и магния. Агрессивные свойства воды проявляются по отношению к бетону и металлам.

Оценка качества воды по отношению к бетону производится по нормам и техническим условиям Н 114–54 «Бетон гидротехнический. Признаки и нормы агрессивности воды-среды». Эти нормы учитывают воздействие  на бетон следующих видов агрессивности: выщелачивающую, углекислую, общекислотную, сульфатную и магнезиальную.

1. Выщелачивающая агрессивность  связана с выщелачиванием карбонатов, главным образом кальция. Если вода, контактирующая с бетоном, содержит низкие концентрации Са2+, а также (HCO3)- и (СOз)2-, то карбонат кальция бетона переходит в раствор. В зависимости от типа цемента в составе бетона вода считается агрессивной при карбонатной жесткости меньшей 0,54 -2,14 мг-экв/дм³.

2. Углекислотная агрессивность  обусловлена высокими концентрациями растворенной в воде углекислоты CO2. Эта агрессивность проявляется в отношении металла (коррозия) и бетона. Разрушение бетона, как и при выщелачивающей агрессивности, сводится к растворению карбоната кальция. Воды, обладающие карбонатной жесткостью менее 1,4 мг-экв/дм³, следует считать агрессивными, независимо от всех других показателей.

3. Общекислотная агрессивность воды связана с повышенной концентрацией водорода (пониженная величина рН). При этом бетон разрушается из-за растворения в кислой среде защитной карбонатной корки. Вода считается агрессивной для всех типов цементов: при рН < 7, если карбонатная жесткость меньше 8,6 мг-экв/дм³; при рН < 6,7, если карбонатная жесткость больше 8,6 мг-экв/дм³ (в пластах высокой проводимости). Для слабопроницаемых пластов вода считается агрессивной при рН<5.


4. Сульфатная агрессивность обусловлена присутствием в воде иона (SO4)2- Этот вид агрессивности проявляется в кристаллизации в бетоне новых соединений и выщелачивании бетона. По сульфатной агрессивности для обычных цементов воду относят к слабоагрессивной при содержании иона (SO4)2 – от 250 до 800 мг/дм³ и к агрессивной при содержании более 800 мг/дм³. В породах высокой проводимости для бетона на портландцементе вода считается агрессивной при следующих попарных содержаниях ионов (в мг/дм³):

Сl – 0–3000 3001–5000 5000

(SO4)2 –  250–500 501–1000 1000

В породах слабой водопроводимости вода считается агрессивной при содержании иона (SO4)2- > 1000 мг/дм³, а для бетонов на пуццолановом, шлаковом и песчано-пуццолановом портландцементе – при содержании иона (SO4)2- > 4000 мг/дм³, независимо от содержания С1-.

5. Магнезиальная агрессивность  вызывает разрушение и вспучивание бетонных конструкций. Для портландцемента, находящегося в сильно проницаемых породах, вода считается агрессивной при содержании иона Mg2+ > 5000 мг/дм³, для других видов цемента – при содержании ионов Mg2+ и (SO4)2-, превышающем следующие попарные соединения ионов (в мг/дм³):

(SO4)2 –    0–1000 1001–2000 2001–3000 3001–4000

Mg2+    5000 3001–5000 2001–3000 1000–2000

6. Агрессивность воды  по отношению к металлу связана с корродирующей способностью вод. Агрессивными по отношению к металлу являются воды: углекислые; сероводородные кислые; обогащенные кислородом. Коррозирующая способность воды может быть определена при помощи коэффициента коррозии: – для вод с кислой реакцией

 

КK = гН+ + гА13+ + rFe2+ + rMg2+ – r(CO3)2– - r(HCO3)-;

 

– для щелочных вод

По величине коэффициента коррозии различают следующие группы вод (содержание Са2+ в мг/дм³):

  • коррозирующие, КK > 0;


  • полукоррозирующие, КK < 0, но КK + 0,05Са2+ > 0;
  • некоррозирующие, КK + 0,05Са2+ < 0.

Общая минерализация  подземных вод

Общую минерализацию подземных вод составляет сумма растворенных в них веществ. Она обычно выражается в г/л или мг/л. Формирование химического состава и общей минерализации подземных вод связано с двумя основными факторами: 1) условиями их происхождения; 2) взаимодействием с горными породами, по которым движется подземная вода, и условиями водообмена. В ряде случаев происходит процесс выщелачивания растворимых горных пород и соответственное обогащение подземных вод теми или иными минеральными солями. В глубинных водах (в погруженных частях структур) в условиях затрудненного водообмена происходят наибольшая концентрация растворенных веществ и значительное увеличение общей минерализации.

К настоящему времени опубликовано много классификаций подземных  вод по их минерализации и химическому  составу. В классификации В. И. Вернадского, О. А. Алексина и других выделяются четыре группы подземных вод: 1) пресные - с  общей минерализацией до 1 г/л; 2) солоноватые - от 1 до 10 г/л; 3) соленые - от 10 до 50 г/л; 4) рассолы - свыше 50 г/л. В классификации  М. С. Гуревича и Н. И. Толстихина приводится более дробное разделение указанных групп исходя из учета потребностей и использования подземных вод для решения различных задач.

Отнесение к пресным  водам обусловлено нормами ГОСТа. Слабосолоноватые воды могут использоваться для нецентрализованного водоснабжения, орошения; соленые - для оценки минеральных (лечебных) вод. Выделение подгрупп рассолов необходимо для правильной оценки термальных, промышленных подземных  вод и вод нефтяных месторождений.

Основной химический состав подземных вод 


Основной химический состав подземных вод определяется содержанием наиболее распространенных трех анионов - НСО3-, S042-, Сlи трех катионов - Са2+, Mg2+, Na+. Соотношение указанных шести элементов определяет основные свойства подземных вод - щелочность, соленость и жесткость. По анионам выделяют три типа воды: 1) гидрокарбонатные; 2) сульфатные; 3) хлоридные и ряд промежуточных - гидрокарбонатно-сульфатные, сульфатно-хлоридные, хлоридно-сульфатные и более сложного состава. По соотношению c катионами они могут быть кальциевыми или магниевыми, или натриевыми, или смешанными кальциево-магниевыми, кальциево-магниево-натриевыми и др. При характеристике гидрохимических типов на первое место ставится преобладающий анион. Так, например, пресные воды в большинстве случаев гидрокарбонатно-кальциевые или гидрокарбонатно-кальциево-магниевые, а солоноватые - могут быть сульфатно-кальциево-магниевыми.


В артезианских бассейнах  наблюдается определенная вертикальная гидрогеохимическая зональность, связанная с различными гидродинамическими особенностями: 1) верхняя зона - интенсивного водообмена; 2) средняя - замедленного водообмена; 3) самая нижняя (наиболее глубокая) - весьма замедленного водообмена. Впервые на гидрогеохимическую зональность и увеличение минерализации подземных вод, и снижение их подвижности с глубиной указал В. И. Вернадский. По Е. В. Посохову (1975), верхняя часть артезианских бассейнов платформ имеет относительно небольшую мощность. Так, например, в Московском артезианском бассейне пресные воды встречаются до глубин 200-300 м, в Днепровско-Донецком - до 500 м. Ниже располагается относительно маломощная гидрогеохимическая зона солоноватых и слабосоленых вод многокомпонентного состава, в которых большая роль принадлежит иону SO42-. Примером тому являются сульфатные кальциево-натриевые воды с минерализацией до 4,5 г/л, вскрытые буровыми скважинами в девонских отложениях Московского артезианского бассейна (на глубинах 400-600 м) и используемые в качестве лечебной "Московской минеральной воды". В более глубокой третьей гидрогеохимической зоне преобладают хлоридные воды с минерализацией 250-350 г/л и более (в Ангаро-Ленском бассейне около 600 г/л).

По мере значительного  увеличения минерализации с глубиной в хлоридно-натриевых рассолах наблюдается  рост содержания иона Са2+ и в наиболее погруженных частях бассейна встречаются хлоридно-кальциевые или хлоридно-кальциево-магниево-натриевые рассолы, что имеет большое значение для нефтяной гидрогеологии. В глубоких водоносных горизонтах с высокой минерализацией, помимо основных анионов и катионов, нередко содержатся йод, бром, бор, стронций, литий, радиоактивные элементы. Особенно большое количество йода, брома и бора встречается в хлоридно-кальциевых водах нефтяных и газовых месторождений, где они местами извлекаются в промышленных количествах.

Указанная гидрогеохимическая зональность характерна для ряда артезианских бассейнов. Вместе с тем  в некоторых бассейнах (Западно-Сибирском, Брестском и др.) сульфатная зона отсутствует, и пресные гидрокарбонатные воды верхней зоны постепенно сменяются хлоридными. По-видимому, та или иная гидрогеохимическая зональность артезианских бассейнов определяется рядом природных факторов: историей развития геологической структуры; условиями водообмена; составом и степенью растворимости водоносных горных пород; соотношением давления и температуры; газовыми компонентами. Именно взаимодействие различных природных факторов и определяет изменение минерализации и состава подземных вод в артезианских бассейнах.


Отмечается также широтная зональность грунтовых вод, связанная с изменениями климатических условий и степени расчлененности рельефа при движении с севера на юг. Г.Н. Каменский, исходя из указанных факторов и особенностей формирования грунтовых вод и их химического состава, выделил на территории СССР две зоны. 1. Зона вод выщелачивания (и выноса солей), приуроченная к гумидным областям (областям избыточного увлажнения) с невысокими положительными среднегодовыми температурами. Грунтовые воды выщелачивания формируются в условиях преобладания подземного стока над испарением. По мере движения с севера на юг изменяются глубина залегания грунтовых вод и их минерализация от очень пресных (больше 0,2 г/л) к пресным (до 1 г/л) и солоноватым (больше 1 г/л) в более южных районах. 2. Зона вод континентального засоления, приуроченная к аридным (засушливым) областям (сухие степи, полупустыни и пустыни), где выпадает малое количество атмосферных осадков, сравнительно высокие температуры и испаряемость. Следовательно, в этой зоне низка величина инфильтрационного питания грунтовых вод по сравнению с высокой испаряемостью, что определяет и низкую величину подземного стока.

В этой зоне развиты преимущественно  солоноватые и соленые воды, доходящие  местами до рассолов. Аналогичная  классификация приводится И.К. Зайцевым и М.П. Распоповым, где, помимо широтной зональности грунтовых вод в пределах равнинных территорий, отмечается высотная зональность воды горных областей

2.3 Коэффициент фильтрации

Коэффициент фильтрации —  это скорость фильтрации при гидравлическом градиенте, равном единице. Он широко используется в практике гидрогеологических расчетов, характеризует водопроницаемость  грунтов, зависит от грануломефического состава, плотности и пористости грунта. Коэффициент фильтрации определяется в лабораторных и полевых условиях.

Средние ориентировочные  значения коэффициента фильтрации для  некоторых видов грунтов приведены  в таблице.

 

 

 

 


 

Ориентировочные значения коэффициента фильтрации:

Грунт

Коэффициент

фильтрации kƒ, м/сут.

Галечниковый (чистый)

200

Гравийный (чистый)

От 100 до 200

Крупнообломочный с песчаным заполнителем

От 100 до 150

Песок:

гравелистый

крупный

средней крупности

мелкий

пылеватый

 

От 50 до 100

От 25 до 75

От 10 до 25

От 2 до 10

От 0,1 до 2

Супесь

От 0,1 до 0,7

Суглинок

0,005 до 0,4

Глина

0,005

Торф:

слаборазложившийся

среднеразложившийся

сильноразложившийся

 

От 1 до 4

От 0,15 до 1,0

От 0,01 до 0,15


 

Для хорошо фильтрующих грунтов (песков и супесей) коэффициент фильтрации определяют с помощью прибора (рис. 5.16), состоящего из трубы длиной l, заполненной  грунтом, и двух трубок — подводящей и отводящей воду. При разности напоров Н2 - Н1 вода будет фильтроваться под действием градиента (J). Определив объем воды V, профильтровавшейся за время t, можно по формуле

Информация о работе Геохимия грунтовых вод городских территорий