Автор работы: Пользователь скрыл имя, 22 Марта 2013 в 20:41, контрольная работа
Дисциплина "Геологические основы разработки нефтяных и газовых месторождений" базируется на науке нефтегазопромысловая геология, являясь неразрывной ее составляющей. Поэтому сначала рассматриваются методологические аспекты науки нефтегазопромысловая геология, а уже во второй части более тесная ее связь с задачами разработки залежей углеводородов.
Второй процесс более эффективен, так как реализуются те же факторы улучшения механизма вытеснения нефти, что и при нагнетании в пласт пара, и, кроме того, дополнительные факторы, свойственные этому процессу (вытеснение нефти водогазовыми смесями, образующимся углекислым газом, поверхностно-активными веществами и др.). Учитывая рост давления нагнетания воздуха с увеличением глубины залегания пластов и необходимость применения компрессоров высокого давления, следует выбирать залежи, расположенные на глубинах не более 1500—2000 м. Методы могут быть рекомендованы для залежей с вязкостью пластовой нефти от 10 до 1000мПа с и более. Такие нефти содержат достаточное количество тяжелых фракций нефти, служащих в процессе горения топливом (коксом). Исходя из технологической возможности и экономической целесообразности процесса, рекомендуется применять его при проницаемости пород более 0,1 мкм2 и нефтенасыщенности более 30—35%. Мощность пласта должна быть более 3—4 м. Рекомендации по верхнему пределу мощности в литературе неоднозначны. Среди других имеются указания на то, что при лучшей проницаемости средней части эксплуатационного объекта нефтенасыщенная мощность может достигать70—80 м и более. При этом процесс горения, протекающий в средней части объекта, может обеспечивать прогрев и его менее проницаемых верхней я нижней частей.
Процесс сухого горения в связи с высокой температурой горения—700 °С и выше—более применим для терригенных коллекторов, поскольку карбонатные коллекторы при высокой температуре подвержены разрушению. При влажном и особенно сверхвлажном процессах горение протекает при меньшей температуре—соответственно 400—500 и 200—300 °С. поэтому они применимы как для терригенных, так и для карбонатных коллекторов.
Процесс сухого горения эффективен при таких же плотных сетках скважин, что и теплофизические методы. При реализации влажного горения в связи со значительными размерами зоны прогрева впереди фронта горения возможно применение сеток скважин плотностью до 16—20 га/скв.
Методы смешивающегося вытеснения.
К этой группе новых методов относят вытеснение нефти смешивающимися с нею агентами—двуокисью углерода СО2, сжиженными нефтяными газами (преимущественно пропаном), обогащенным газом (метаном со значительным количеством С2—С6), сухим газом высокого давления (в основном метаном). Каждый из методов эффективен при определенных компонентных составах и фазовых состояниях нефти и давлении, при котором может происходить процесс смешивания. С учетом последнего вытеснение нефти сухим газом высокого давления наиболее эффективно для залежей с пластовым давлением более 20 МПа, вытеснение обогащенным газом—10—20 МПа, сжиженным газом и двуокисью углерода—8—14 МПа. Следовательно, эти методы целесообразно применять для залежей с большими глубинами залегания пластов—более 1000—1200 м. Благоприятны также низкая вязкость пластовой нефти—менее 5 мПа×с и относительно небольшая мощность пластов—до 10—15 м. В принципе методы могут использоваться при различной проницаемости пластов, но практически их целесообразно применять при низкой проницаемости, когда не удастся реализовать более дешевый метод — заводнение.
Температура пласта имеет ограничение лишь при вытеснении нефти сжиженным пропаном—не более 96—97 °С, так как при большей температуре он переходит в газообразное состояние. Применение других методов температурой не лимитируется.
Методы
вытеснения нефти газом высокого
давления и обогащенным газом
рекомендуются для пластов с
высокой нефтенасыщенностью—
4.4.
ОСОБЕННОСТИ РАЗРАБОТКИ
Системы и процессы разработки газовых и газоконденсатных залежей имеют ряд особенностей.
В отличие от нефтяных газовые залежи разрабатываются без воздействия на пласты с использованием природной энергии. В связи с этим отбор газа из залежей на протяжении всего периода разработки обычно сопровождается снижением среднего пластового давления — более значительными темпами при газовом режиме и менее значительными при упруговодонапорном.
Снижение пластового давления в разрабатываемых газовых залежах в процессе их разработки приводит к важным последствиям.
При взаимодействии залежей с законтурной областью снижение пластового давления в залежах, особенно в крупных, оказывает влияние на состояние пластового давления во всей водонапорной системе, к которой они приурочены. В результате расположенные вблизи разрабатываемых новые залежи к началу их освоения могут иметь пластовое давление, пониженное по сравнению с начальным давлением в водонапорной системе. В одновозрастных отложениях может также наблюдаться взаимодействие разрабатываемых залежей, выражающееся в заметном несоответствии скорости снижения пластового давления темпам отбора газа.
Одно из важных последствий падения пластового давления—постепенное снижение дебита скважин в процессе разработки. В отличие от нефтяных скважин снижение дебита газовых скважин при падении давления происходит даже при сохранении постоянной депрессии на забое скважины. Это обусловлено нарушением линейного закона фильтрации вследствие весьма высоких скоростей движения газа в прискважинной зоне.
При снижении пластового и забойного давлений возрастает величина превышения над ними геостатического давления, что может приводить к заметной деформации пород-коллекторов, особенно в призабойных зонах скважин. В результате ухудшаются коллекторские свойства пород и происходит некоторое снижение дебита скважин.
При сниженном пластовом давлении во избежание поглощений промывочной жидкости и других осложнений часто бывает необходимо изменить технологию вскрытия продуктивных пластов в бурящихся скважинах.
Одна из важных особенностей газовых залежей обусловлена тем, что вследствие высокой подвижности газа даже при больших размерах залежей каждая из них представляет собою единую газодинамическую систему, все части которой в процессе разработки взаимодействуют. Это создает предпосылки для управления процессом разработки путем изменения отборов газа из различных частей залежи с целью перераспределения пластового давления в ее пределах и возможно большего замедления темпов его снижения в зонах наибольшего отбора.
Другая особенность разработки газовых залежей, также обусловленная высокой подвижностью пластового газа,— высокие дебиты скважин, примерно на два порядка превышающие дебиты нефтяных скважин при одинаковых коллекторских свойствах пластов. Это позволяет обеспечивать достаточно высокие темпы разработки относительно небольшим количеством скважин, т. е. при намного меньшей плотности сеток скважин, чем для нефтяных залежей.
Как отмечалось, по мере снижения пластового и забойного давлений дебит газовых скважин уменьшается. Для большей продолжительности периода сохранения достигнутого максимального уровня добычи газа по мере снижения дебита скважин бурят и вводят в эксплуатацию дополнительные скважины. В результате фонд действующих скважин постепенно возрастает. Но и при этом средняя плотность сетки скважин остается намного меньшей, чем при разработке нефтяных залежей. После отбора 60—70 % извлекаемых запасов газа бурение скважин обычно прекращают.
По-разному
решается вопрос об эксплуатации обводняющихся
скважин при разработке нефтяных
и газовых месторождений. Нефтяные
скважины после появления в них
воды продолжительное время
Свои особенности имеет разработка газоконденсатных залежей. При отборе из залежей газа с использованием природных режимов пластов забойное давление в скважинах, а затем и пластовое давление падают ниже давления начала конденсации. В результате сначала в локальных прискважинных зонах, а затем и повсеместно начинаются фазовые переходы — часть конденсата выпадает из газа в виде жидкости, оседает в пустотах породы и остается в недрах, что обусловливает его потери н снижение коэффициента извлечения конденсата. Конденсат—ценнейшее сырье для нефтехимической промышленности. Поэтому для крупных по запасам газоконденсатных залежей, характеризующихся высоким содержанием конденсата, весьма актуальна проблема применения систем разработки, обеспечивающих поддержание пластового давления выше давления начала конденсации. В настоящее время считают возможным применение для этой цели методов нагнетания в пласт сухого газа или воды.
Более
приемлем первый метод, при котором
в пласт нагнетается
В этом отношении имеет преимущество метод заводнения, который может быть освоен в самом начале разработки залежи. Добываемый при этом сухой газ может в полном объеме использоваться в народном хозяйстве. Вместе с тем применение заводнения связано со своими издержками. Главная из них—возможное сокращение сроков эксплуатации скважин в связи с их обводнением в результате перемещения воды по наиболее проницаемым прослоям. Вывод из эксплуатации обводняющегося фонда скважин в условиях обеспечиваемого заводнением высокого пластового давления в залежи может приводить к снижению эффективности процесса разработки и оставлению в недрах существенной доли запасов газа и конденсата. Метод заводнения также еще не нашел широкого применения при разработке газоконденсатных залежей.
Важная особенность проектирования разработки газовых и газоконденсатных залежей с малым содержанием конденсата при природных режимах заключается в том, что общее проектное количество добывающих скважин определяется исходя из необходимости обеспечения возможно более продолжительного периода эксплуатации с максимальным уровнем добычи газа. Проблема достижения проектного коэффициента извлечения газа решается параллельно этим же количеством скважин. С началом падения добычи газа из залежи бурение скважин обычно прекращают. На нефтяных же залежах значительная часть проектных скважин предназначена главным образом для достижения проектного коэффициента извлечения нефти. Бурение таких скважин на участках, где выявлены целики нефти, осуществляется практически до конца разработки залежи.
Строение газовых залежей по сравнению с нефтяными в конечном счете освещается значительно меньшим количеством скважин. В связи с этим при изучении геологического строения залежей и запасов газа особенно важно использовать все возможные косвенные методы — гидродинамические, материального баланса и др.
На выбор систем разработки газовых и газоконденсатных залежей, на динамику годовой добычи газа и на весь процесс разработки большое влияние оказывает их геолого-промысловая характеристика.
Так, характер природного режима во многом влияет на темпы падения пластового давления при разработке и, следовательно, на характер снижения дебита скважин. В свою очередь, это определяет масштабы и сроки бурения дополнительных скважин, необходимых для возможно более продолжительного сохранения максимального уровня добычи газа, технологию эксплуатации скважин и сроки обустройства месторождения. При прочих равных условиях в случае водонапорного режима пластовое давление снижается медленнее, чем в случае газового режима, с повышением активности краевой области падение давления замедляется. Вместе с тем действие водонапорного режима приводит и к неблагоприятным последствиям. При неоднородности коллекторских свойств газоносных пород по площади и разрезу, а также неравномерности дренирования залежи в разных частях ее объема происходит ускоренное продвижение воды по высокопроницаемым прослоям разреза. Это может стать причиной преждевременного обводнения скважин, расположенных в пределах текущего внешнего контура газоносности.
Следует отметить, что по сравнению с нефтяными залежами в газовых существуют условия для более неравномерного перемещения воды. Это связано с тем, что кондиционные пределы проницаемости пород для газа значительно ниже, чем для нефти и воды, и поэтому объективно повышается неоднородность пластов за счет включения в эффективный объем залежи пород, непроницаемых для нефти и воды. В результате создаются условия для весьма неравномерного внедрения воды в газовые залежи по проницаемым для нее прослоям. В рассматриваемых условиях особо важное значение приобретает регулирование отборов газа по мощности продуктивных отложений с целью максимально возможного выравнивания скорости внедрения воды. Необходимо выполнение большого объема работ в скважинах по изоляции (выключению из работы) обводненных интервалов. Вместе с тем, как показывает опыт разработки, даже при высокой организации работ по управлению процессом разработки неравномерное перемещение воды, обусловленное неоднородностью пород, приводит к увеличению потерь газа в недрах.
В связи с разной степенью неоднородности продуктивных горизонтов величина коэффициента извлечения газа при водонапорном режиме колеблется в довольно широком диапазоне. На залежах с умеренной неоднородностью коллекторских свойств может достигаться наиболее высокая величина коэффициента извлечения газа, близкая к таковой при газовом режиме. При высокой геологической неоднородности конечный коэффициент извлечения газа остается намного меньшим.
Информация о работе Геологические основы разработки нефтяных и газовых месторождений