Геотермальные электростанции и геотермальные ресурсы

Автор работы: Пользователь скрыл имя, 30 Ноября 2015 в 21:23, реферат

Описание работы

Геотермия (геотермика) изучает тепловое состояние, распределение температуры и её источников в недрах и тепловую историю Земли. Вопрос о распределении температур тесно связан с распределением источников тепла в глубинах Земли, что имеет фундаментальное значение для любых гипотез о строении и эволюции планеты. Температура вместе с давлением и значением касательных напряжений определяет состояние вещества и характер процессов в недрах Земли. В отличие от давления, характер распределения температуры с глубиной отличается большей неопределённостью.

Содержание работы

Общие сведения о геотермии
Теория решетчатой (фоновой) теплопроводности
Геотермическое поле и геотермический градиент
Геотермические измерения на континентах и в океане. Определение теплового потока и геотермического градиента.
Направления современной геотермии.
Геотермальные электростанции и геотермальные ресурсы
Вывод
Список использованной литературы

Файлы: 1 файл

геотермические измерения на континентах и в океанах.docx

— 305.49 Кб (Скачать файл)

Рис. 5.1. Графики распределения температур по скважинам в ряде районов Украины и Северного Кавказа: 1 - Украинский щит; 2 - Ставропольский край; 3 - Краснодарский край


Региональные термические исследования служат для выявления термического режима и состояния недр Земли, что является важным источником информации для геофизики и теоретической геологии. Практически эти исследования направлены на изучение геотермических ресурсов и выявление участков, перспективных для использования глубинного тепла в качестве источника энергии. Эти участки располагаются в районах с повышенным и тепловым потоком (свыше 0,1 Вт/м2 ), и геотермическим градиентом (5 - 20 С на 100 м). В таких районах на глубинах свыше 1 - 3 км могут находиться скопления либо парогидротерм, либо термальных вод, либо прогретых пород. В настоящее время используют не только парогидротермы и термальные воды, но и подземные тепловые котлы, т.е. зоны разрушенных перегретых пород, куда можно закачивать воду и после ее нагрева использовать для получения электроэнергии, теплофикации и других целей.

Локальные методы терморазведки

К локальным относятся те методы терморазведки, в которых температуры измеряются в шпурах глубиной до 1 м или неглубоких скважинах (до 10 - 20 м). Они имеют прикладное применение при изучении месторождений полезных ископаемых и геологической среды.

Поисково-разведочные термические исследования.

В комплексе с другими наземными и подземными геофизическими методами на рудных, угольных, нефтяных и газовых месторождениях используется и терморазведка. Температуры пород измеряют в скважинах наземного и подземного бурения. Систему наблюдений приспосабливают к имеющейся сети скважин, поскольку специальное бурение скважин для терморазведки экономически невыгодно и проводится лишь изредка. Температуры измеряют в разных интервалах глубин скважины.

Большие трудности при терморазведке связаны с необходимостью получения установившихся температур, чтобы охарактеризовать естественное температурное поле горных пород. Оно оказывается нарушенным в результате искажающего влияния таких факторов, как разогрев пород при бурении, влияние промывочной жидкости, вентиляция горных выработок, усиленное окисление руд и углей, вскрытых горных выработок и др. По измеренным естественным температурам строят графики их изменения с глубиной, а для постоянных глубин - со временем. Из наблюденных температур желательно исключить вариации теплового поля. При достаточной густоте точек площадных наблюдений строят карты изотерм (постоянных температур) для одинаковых глубин, карты средних геотермических градиентов и др.

Интерпретация геотермических профилей и карт обычно качественная и сводится к выделению локальных аномалий термического поля и сопоставлению их с аномалиями других геофизических методов, а также с геологическими материалами.

Применение терморазведки для изучения геологической среды.

Термические исследования геологической среды могут использоваться при решении различных инженерно-геологических, гидрогеологических, мерзлотно-гляциологических и геоэкологических задач. Измерения температур проводятся в шпурах глубиной до 1 м и скважинах глубиной до 10 - 30 м. В различных природных условиях получаемые геотермические профили и карты служат для оконтуривания многолетнемерзлых и талых горных пород с разными тепловыми свойствами; изучения динамики подземных вод (приток глубинных вод создает положительные аномалии температур, поверхностных - отрицательные); прогноза приближения забоя выработок к обводненным зонам и решения других задач.

В геоэкологических исследованиях шпуровую терморазведку можно использовать для изучения теплового загрязнения, выявления отходов промышленных и сельскохозяйственных предприятий.

Инженерно-гидрогеологические геотермические исследования

Инженерно-гидрогеологические геотермические исследования обычно проводят в неглубоких (10—30 м) скважинах с установившимся температурным режимом. Желательно изолировать водоносный горизонт от скважины. В разных природных условиях получаемые геотермические профили и карты служат для оконтуривания многолетнемерзлых и талых горных пород; изучения динамики подземных вод (приток глубинных вод создает положительные аномалии температур, поверхностных—отрицательные); прогноза приближения забоя выработок к обводненным зонам и решения других задач.

Особый интерес представляет определение скорости фильтрации подземных вод. Как отмечалось выше, тепловой поток в условиях заметной конвекции тепла за счет подземных вод зависит от геотермического градиента, коэффициента температуропроводности и скорости фильтрации подземных вод.

Для выявления мест фильтрации вод из водохранилищ, каналов, рек и стволов скважин, а также интервалов, где утечки отсутствуют, можно использовать измерение не только естественных, но и искусственных тепловых полей. Участки сосредоточенной фильтрации выделяют по температурным аномалиям, знак которых зависит от температурного режима акваторий. Более четкие результаты получают при искусственном электрическом подогреве воды во всех точках измерений. По скорости восстановления температур можно не только качественно выявить места утечек, но и оценить скорости фильтрации.

 

      ГЕОТЕРМАЛЬНЫЕ ЭЛЕКТРОСТАНЦИИ И  ГЕОТЕРМАЛЬНЫЕ РЕСУРСЫ

 

Геотермальная энергия – это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 0С каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно как для обогрева домов и зданий, так и для производства электроэнергии. Термальные регионы имеются во многих частях мира.

По различным подсчетам, температура в центре Земли составляет, минимум, 6 650 0С. Скорость остывания Земля примерно равна 300-350 0С в миллиард лет. Земля содержит 42 х 1012 Вт тепла, из которых 2% содержится в коре и 98% - в мантии и ядре. Современные технологии не позволяют достичь тепла, которое находится слишком глубоко, но и 840 000 000 000 Вт (2%) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время. Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.

Чем глубже скважина, тем выше температура, но в некоторых местах геотермальная температура поднимается быстрее. Такие места обычно находятся в зонах повышенной сейсмической активности, где сталкиваются или разрываются тектонические плиты. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. Чем выше геотермический градиент, тем дешевле обходится добыча тепла, за счет уменьшения расходов на бурение и качание. В наиболее благоприятных случаях, градиент может быть настолько высок, что поверхностные воды нагреваются до нужной температуры. Примером таких случаев служат гейзеры и горячие источники.

Ниже земной коры находится слой горячего и расплавленного камня называемый магмой. Тепло возникает там, прежде всего, за счет распада природных радиоактивных элементов, таких как уран и калий. Энергетический потенциал тепла на глубине 10 000 метров в 50 000 раз больше энергии, чем все мировые запасы нефти и газа.

Зоны наивысших подземных температур находятся в регионах с активными и молодыми вулканами. Такие «горячие точки» находятся на границах тектонических плит или в местах, где кора настолько тонка, что пропускает тепло магмы. Множество горячих точек находится в зоне Тихоокеанского кольца, которое еще называют «огненное кольцо» из-за большого количества вулканов.

Геотермальные электростанции -  способы использования геотермальной энергии

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространена в высоких широтах на границах тектонических плит, например в Исландии и Японии. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 150 0С).

В Калифорнии, Неваде и некоторых других местах геотермальная энергия используется на больших электростанциях, Так, в Калифорнии около 5% электричества вырабатывается за счет геотермальной энергии, в Сальвадоре геотермальная энергия производит около 1/3 электроэнергии. В Айдахо и Исландии геотермальное тепло используется в различных сферах, в том числе и для обогрева жилья. В тысячах домах геотермальные тепловые насосы используются для получения экологически чистого и недорогого тепла.

 

 

 

 

 

 

 

 

 

 

 

 

             ВЫВОД

 

Геотермия дает важнейшую количественную  информацию  для  понимания  и моделирования геодинамических процессов в геосферах и для оценки  энергетики геолого-геофизических  проявлений.

Очень важны   геотермические  исследования, определения теплового потока и геотермического градиента на континентах и в океанах. 

Проблема энергетического баланса еще далека от разрешения, потому что незнание всего лишь одной компоненты приводит к кажущемуся дисбалансу. Следовательно, роль геотермии в познании энергетического состояния Земли является определяющей, а это значит, что без информации о тепловом поле мы не решим основную задачу теоретической геологии – познание эволюции нашей планеты.

 

    

 

         СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

 

Джеффрис Г., Земля, ее происхождение, история и строение, пер. с англ., М., 1960; Гутенберг Б., Физика земных недр, пер. с англ., М., 1963; Яновский Б. М., Земной магнетизм, ч. 1-2, Л., 1963-64; Магницкий В. A., Внутреннее строение и физика Земли, М., 1965; Развитие наук о Земле в СССР, М., 1967; Любимова Е. A., Термика Земли и Луны, М., 1968; Сафронов В. С., Эволюция допланетного облака и образование Земли и планет, М., 1969; Стейси Ф. Д., Физика Земли, пер. с англ., М., 1972; Природа твердой Земли, (пер. с англ.), М., 1975; Ботт M., Внутреннее строение Земли, пер. с англ., М., 1974; Шимбирев Б. П., Теория фигуры Земли, М., 1975; Белоусов В. В., Основы геотектоники, М., 1975; Монин А. С., История Земли, Л., 1977; Жарков В. Н., Внутреннее строение Земли и планет, М., 1978; Тектоносфера Земли, Под редакцией В. В. Белоусова, М., 1978; Буллен К. Е., Плотность Земли, пер. с англ., М., 1978; Геофизика океана, т. 1, М., 1979; Артюшков Е. В., Геодинамика, М., 1979; Жарков В. Н., Трубицын В. П., Физика планетных недр, М., 1980.

 

 

 


Информация о работе Геотермальные электростанции и геотермальные ресурсы