Эффузивно-осадочные горные породы

Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 23:25, контрольная работа

Описание работы

Основной целью курсовой работы является закрепление материала по курсу Основы инженерной геологии и гидрогеологии.
Основными задачами курсовой работы являются: рассмотрение эффузивно - осадочных горных пород, карт гидроизопьез и состава инженерно - гелогических работ для строительства.

Содержание работы

Введение________________________________________________________3
1. Эффузивно-осадочные горные породы_____________________________3
2. Карты гидроизопьез____________________________________________14
3. Состав инженерно-геологических работ для строительства___________14
Заключение_____________________________________________________32
Список использованных источников информации_____________________32

Файлы: 1 файл

Геология курсовая.docx

— 307.55 Кб (Скачать файл)

5. влияние на объект подземных вод;

6. состав и свойства грунтов как несущих оснований и особенности производства земляных работ;

7. прогноз влияния объекта на природную среду, в частности, по загрязнению земли, атмосферы и гидросферы.

Инженерно-геологические  заключения. В практике инженерно-геологических исследований очень часто вместо больших отчетов приходится составлять инженерно-геологические заключения. Выделяются три вида заключений: 1) по условиям строительства объекта; 2) о причинах деформаций зданий и сооружений и 3) экспертиза. В первом случае заключение носит характер сокращенного инженерно-геологического отчета. Такое заключение может быть выполнено для строительства отдельного здания.

Заключение о причинах деформаций зданий и сооружений могут  иметь различное содержание и  объем. В их основу кладутся материалы ранее проведенных исследований, осмотр местности, сооружения. При необходимости дополнительно выполняется небольшой объем инженерно-геологических исследований. Заключение должно вскрыть причины деформаций и наметить пути их устранения.

Инженерно-геологическая  экспертиза проводится, главным образом, по проектам крупных сооружений. Основой  для экспертизы является наличие спорных и разноречивых оценок природных условий (в процессе изысканий) или аварий сооружений (в процессе их эксплуатации).

Экспертиза силами квалифицированных  специалистов устанавливает:

1. правильность приемов исследований;

2. достаточность объемов работ;

3. правомерность выводов и рекомендаций;

4. причины аварий и т. д.

По объему работы экспертиза бывает кратковременная и длительная. В первом случае вопрос решается практически сразу. Выводы излагаются в виде заключения. Во втором случае экспертиза кроме изучения имеющихся материалов требует выполнения специальных работ по определенной программе с указанием сроков. По окончании работ выводы могут быть изложены в виде заключения или даже небольшого инженерно-геологического отчета.

Экспертиза должна давать ответ на поставленные вопросы, содержать  необходимые конкретные рекомендации, обоснования и доказательства целесообразности предлагаемых инженерно-технических мероприятий.

Инженерно-геологическая  съемка представляет собой комплексное изучение геологии, гидрогеологии, геоморфологии и других естественноисторических условий района строительства. Эта работа дает возможность оценить территорию со строительной точки зрения.

Масштаб инженерно-геологической  съемки определяется детальностью инженерно-геологических исследований и колеблется от 1:200 000 до 1:10 000 и крупнее. Основой для проведения съемки служит геологическая карта данной территории.

Геоморфологические исследования уточняют характер рельефа, его возраст  и происхождение. При геологических  работах определяют условия залегания пород, их мощность, возраст, тектонические особенности, степень выветренности и т. д. Для этой цели изучают естественные обнажения, представляющие собой выходы на поверхность слоев горных пород на склонах гор, оврагов, речных долин. Для каждого слоя записывают наименование породы, окраску, состав, примеси, измеряют видимую мощность и элементы залегания. На карте указываются местонахождения обнажений. Наиболее характерные для данного района обнажения зарисовывают и фотографируют.

Районы, где наблюдается  большое количество обнажений, называют открытыми, при отсутствии их — закрытыми. В закрытых районах геологическое строение изучают с помощью разведочных выработок (буровых скважин, шурфов и т. д.). Выработки документируются. Одновременно из них отбирают пробы образцов пород для лабораторных исследований.

При инженерно-геологической  съемке изучают гидрогеологические условия для выяснения обводненности пород, глубины залегания подземных вод, их режима и химического состава; выявляют геологические явления и процессы (обвалы, осыпи, оползни, карст и т. д.), которые могут негативно отразиться на устойчивости и нормальной эксплуатации зданий и сооружений, изучают опыт строительства на данной территории, определяют физико-механические свойства пород полевыми методами, а также в специальных полевых лабораториях.

В процессе инженерно-геологической  съемки производят поиски месторождений естественных строительных материалов.

На основе полученных данных составляют инженерно-геологическую карту района строительства. Это дает возможность произвести инженерно-геологическое районирование территории и выделить участки, наиболее пригодные под строительство крупных объектов (промышленные предприятия, жилые микрорайоны и т. д.).

Аэрокосмические методы. Для  ускорения сроков съемочных работ и повышения их качества используют аэрометоды, которые особенно эффективны в районах, труднодоступных для наземного изучения (заболоченные низменности, пустыни и т. д.). Широкое распространение в современных условиях получили методы космической съемки, для которых разработана специальная аппаратура, методики дешифрирования снимков, позволяющие получать высокоточную и достоверную геологическую информацию.

Буровые и горнопроходческие  разведочные работы являются существенной частью инженерно-геологических и гидрогеологических полевых исследований. С помощью буровых скважин и горных выработок (шурфов, штолен и др.) выясняют геологическое строение и гидрогеологические условия строительной площадки на необходимую глубину, отбирают пробы грунтов и подземных вод, проводят опытные работы и стационарные наблюдения.

К главнейшим разведочным  выработкам относят расчистки, канавы, штольни, шурфы и буровые скважины. При инженерно-геологических работах наиболее часто используют шурфы и буровые скважины.

Расчистки, канавы и штольни  относят к горизонтальным выработкам. Их целесообразно применять на участках, сложенных крутопадающими слоями. При слабонаклонном и горизонтальном залегании слоев следует проходить шурфы и буровые скважины.

Расчистки - выработки, применяемые для снятия слоя рыхлого делювия или элювия с наклонных поверхностей естественных обнажений горных пород.

Канавы (траншеи) - узкие (до 0,8 м) и неглубокие (до 2 м) выработки, выполняемые вручную или с помощью техники с целью обнажения коренных пород, лежащих под наносами.

Штольни - подземные горизонтальные выработки, закладываемые на склонах рельефа и вскрывающие толщи горных пород в глубине массива. Стены штольни, как правило, крепятся, если их проходят в нескальных породах.

Шурфы - колодцеобразные вертикальные выработки прямоугольного (или квадратного) сечения. Шурф круглого сечения называют «дудкой». Проходку дудок легче механизировать, но по прямоугольным шурфам проще и точнее определить положение слоев в пространстве. Шурфы помогают детально изучать геологическое строение участка, производить отбор любых по размеру образцов с сохранением их структуры и природной влажности. Недостатком является высокая стоимость и трудоемкость работ по отрывке шурфов, особенно в водонасыщенных породах. Следует отметить, что за последнее время появились специальные шурфокопательные машины, позволяющие проходить шурфы круглого сечения. Размер шурфов в плане зависит от их предполагаемой глубины. Чаще всего это 1x1 м; 1x1,5 м; 1,5 х 1,5 м и т. д. Диаметр дудок не превышает 1 м. Обычно глубина шурфа бывает 2—3 м, максимально до 4—5 м.

По мере проходки шурфа  непрерывно ведут геологическую  документацию - записывают данные о вскрываемых породах, условиях их залегания, появлении грунтовых вод; производят отбор образцов. По всем четырем стенкам и дну делают зарисовку и составляют развертку шурфа. Это позволяет более точно определить мощность слоев и элементы их залегания в пространстве.

По окончании разведочных  работ шурфы тщательно засыпают, грунт утрамбовывают, а поверхность земли выравнивают.

Буровые скважины представляют собой круглые вертикальные или наклонные выработки малого диаметра, выполняемые специальным буровым инструментом. В буровых скважинах различают устье, стенки и забой .

Бурение является одним из главнейших видов разведочных работ, применяется в основном для исследования горизонтальных или пологопадающих пластов. С помощью бурения выясняют состав, свойства, состояние грунтов, условия их залегания. Вся эта работа основывается на исследовании образцов пород, которые непрерывно извлекаются из скважины по мере ее углубления в процессе бурения. В зависимости от способа бурения и состава пород образцы могут быть ненарушенной или нарушенной структуры. Образцы ненарушенной структуры получили название керш.

К преимуществам бурения  относят: скорость выполнения скважин, возможность достижения больших  глубин, высокую механизацию производства работ, мобильность буровых установок. Бурение имеет свои недостатки: малый диаметр скважин не позволяет производить непосредственный осмотр стенок, размер образцов ограничивается диаметром скважины, по одной скважине нельзя определить элементы залегания слоев.

Диаметр скважин, используемых в практике инженерно-геологических исследований, обычно находится в пределах 100—150 мм. При отборе образцов на лабораторные испытания скважины следует бурить диаметром не менее 100 мм. Глубина скважин определяется задачами строительства и может составлять десятки метров; при гидротехническом строительстве достигает сотен метров, при поисках нефти и газа — нескольких километров.

При инженерно-геологических  исследованиях применяют такие виды бурения, которые позволяют получать образцы пород.

Проходка скважин в  слабых и водонасыщенных породах бывает затруднена вследствие обваливания и оплывания стенок. Для их крепления применяют стальные обсадные трубы, которые опускают в скважины и продолжают бурение.

По мере проходки буровой  скважины оформляется ее геологическая документация в виде геолого-литологической колонки, на которой видно, как залегают слои, их мощность, литологический тип, глубина залегания уровня грунтовых вод, места отбора образцов пород в виде керна, возраст пород в индексах. Буровые колонки составляют в масштабе 1:100—1:500. После завершения бурения скважина засыпается.

Отбор образцов пород и проб воды. Отбор образцов производят из обнажений, буровых скважин, шурфов и других выработок. Пробы отбирают послойно, на всю глубину выработки, но не реже чем через каждые 0,5—1,0 м. Наиболее детально опробуется слой, который будет несущим основанием сооружений. Из всех образцов, полученных при инженерно-геологических исследованиях, 5—10 % отбирают для последующих лабораторных анализов.

Для инженерно-геологических  работ обязателен отбор монолитов, т. е. образцов с сохранением их структуры. Особенно это важно при отборе образцов из слоев связных дисперсных пород (глины, суглинки), в которых кроме структуры необходимо сохранить природную влажность. В шурфах и обнажениях отбирают монолиты в форме, близкой к кубу, с размерами от 10 х 10 х 10 см до 30 х 30 х 30 см. Из буровых скважин с помощью грунтоносов отбирают цилиндрические монолиты высотой 20—30 мм. Монолиты немедленно парафинируют для сохранения их естественной влажности, т. е. обматывают слоем марли, пропитанной парафиногудронной смесью, подогретой до 60—65 °С. Монолиты предохраняют от сотрясения и промерзания и хранят обычно не более 1,5 месяцев.

Помимо монолитов, отбирают образцы нарушенной структуры и образцы рыхлых пород. Вес каждой такой пробы составляет до 0,5 кг.

Пробы подземной воды берут  из каждого водоносного горизонта в количестве от 0,5 до 2 л. Количество отбираемой пробы зависит от вида химического анализа (полный или сокращенный) и степени минерализации воды. Вода набирается в чистую специальную емкость и тщательно закупоривается.

Геофизические методы исследования обычно сопутствуют разведочным работам и в ряде случаев позволяют значительно сократить объем шурфования и бурения. В большинстве случаев они применяются параллельно с другими исследованиями. С их помощью с определенной степенью достоверности можно изучать физические и химические свойства пород и подземных вод, условия залегания, движение подземных вод, физико-геологические и инженерно-геологические явления и процессы.

В практике инженерно-геофизических  изысканий основное место занимают сейсмометрия и электрометрия.

Сейсмические  методы основаны на различии в скоростях распространения упругих колебаний, возникающих как от естественных причин, так и от специально проводимых взрывов. В последнее время в инженерно-геологических работах используют разнообразные, в том числе одноканальные, микросейсмические установки. С их помощью можно установить глубину залегания скальных пород под наносами, выявить дно речных долин, карстовые полости, уровень грунтовых вод, мощность талых пород в вечной мерзлоте и т. д. В сложных сейсмических и в городских условиях этот метод недостаточно точен.

Электроразведка основана на исследовании искусственно создаваемого в массивах пород электрического поля. Каждые породы, в том числе сухие и насыщенные водой, характеризуются своим удельным электрическим сопротивлением. Чем больше разнятся эти удельные сопротивления между собой, тем точнее результаты электроразведки для данной строительной площадки.

Наибольшее применение при  инженерно-геологических исследованиях нашли электропрофилирование и вертикальное электрозондирование.

При электропрофилировании на исследуемом участке погружают в грунт серию электродов по намеченным створам и на каждом из них измеряют сопротивление пород путем перемещения прибора с фиксированным положением электродов. Это дает сведения об изменении на участке удельного сопротивления, что может быть связано, в частности, с наличием пустот карстового происхождения.

Вертикальное  электрическое зондирование (ВЭЗ) позволяет определять глубину залегания коренных пород и уровень подземных вод, дна речных долин, выделять слои различного литологического состава, в том числе водопроницаемые и водоупорные пласты и т. д. Сущность этого метода заключается в том, что по мере увеличения расстояния между питающими электродами А и Б линии токов перемещаются в глубину. Глубина электрического зондирования зависит от расстояния между точками А и Б и составляет в среднем 1/3 (или 1/4) этого расстояния. Измеряя силу тока между питающими электродами А и Б и разность потенциалов между приемными электродами В и Г, можно найти значения электрического сопротивления пород. По этим данным, например, можно уже построить геологический разрез.

Информация о работе Эффузивно-осадочные горные породы