Шаляпина Анна Ивановна ООСз-09
КР: Электрообработка в технологиях очистки
воды
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Быстрый рост промышленного
и сельскохозяйственного производства
и транспорта в последние десятилетия
привел к загрязнению биосферы газообразными,
жидкими и твердыми отходами. Загрязнение
воздушного и водного бассейнов, ущерб,
наносимый животному и растительному
миру, нерациональное использование природных
ресурсов вызывает серьезную озабоченность
у общественности всех стран.
Вода является основной составляющей
жизни на нашей планете. Можно несколько
недель прожить без еды, но без употребления
воды человек умирает через несколько
дней. В современной экономической жизни
вода имеет важное значение для сельского
хозяйства, промышленности, производства
электроэнергии, транспорта. Поэтому рациональное
использование водных ресурсов нашей
планеты, защита их от истощения и загрязнения
являются одной из главнейших задач во
всех технически развитых странах мира.
При выпуске в промышленном
производстве продукции разнообразного
ассортимента в сточных водах накапливаются
различного рода примеси: взвеси в виде
тонкодисперсных суспензий и эмульсий;
коллоидные и высокомолекулярные соединения;
органические вещества; металлы, соли,
кислоты, основания. Для каждой из групп
примесей существуют свои наиболее эффективные
методы очистки.
Прогрессивным направлением
в технологии водоподготовки и очистки
сточных вод и технологических растворов
является разработка и внедрение электрохимических
способов, которые находят широкое применение
как альтернативные в том случае, если
традиционные способы механической и
реагентной обработки воды оказываются
недостаточно эффективными или не могут
быть использованы из-за дефицита производственных
площадей, сложности доставки и использования
реагентов, либо по другим причинам. Электрохимические
способы позволяют корректировать физико-химические
свойства обрабатываемой воды, концентрировать
и извлекать из нее ценные химические
продукты и металлы, обеспечивать глубокую
минерализацию органических загрязнений,
обладают высоким бактерицидным эффектом,
значительно упрощают технологические
схемы очистки.
Во многих случаях электрохимические
способы являются экологически чистыми,
исключающими «вторичное» загрязнение
воды анионными и катионными остатками,
характерными для реагентных способов.
Кроме того, электрообработка при правильном
сочетании ее с другими способами позволяет
успешно очищать природные и сточные воды
от примесей различного состава и дисперсности
до уровня ПДК. Многие технические решения,
положенные в основу разработок, являются
ноу-хау. Степень очистки сточных вод от
взвешенных веществ составляет более
99%, от других загрязнений — 90-97%. Электрохимическая
технология является практически безотходной
и обеспечивает глубокую очистку промышленных
сточных вод от лимитирующих загрязнений,
что позволяет использовать очищенные
воды повторно.
1 МЕТОДЫ ОЧИСТКИ ВОДЫ
Способов,
которыми можно очистить воду, несколько.
Какие же из них необходимо использовать
для того, чтобы эффективно очистить воду
для питьевых целей? Чтобы дать правильный
ответ на этот вопрос, необходимо в каждом
конкретном случае знать, от чего воду
придется чистить. Это можно узнать с помощью
химического и бактериологического анализов,
однако, как правило, подобные анализы
достаточно дороги, и в ряде случаев можно
обойтись и без них. Далее будут рассмотрены
наиболее распространенные способы очистки
воды.
Надо
отметить, что в большинстве случаев доочистка
воды фильтром осуществляется не одним
способом, а их сочетанием. Именно такой
комплексный подход дает наилучшие результаты.
Существуют
следующие методы очистки воды:
а)
механическая фильтрация – самый
простой способ очистки воды. Механическая
очистка воды обеспечивается улавливанием
частиц нерастворенных веществ за счет
разницы размеров самих частиц и каналов
фильтра, по которым протекает очищаемая
вода. Проще говоря, вода проходит через
своеобразное «сито».
Размер
частиц, задержанных фильтром, определяется
диаметром каналов в материале водоочистителя,
по которым протекает вода (то есть размерами
отверстий в «сите»).
Например,
колонки, заполненные гранулированным
активированным углем с диаметром гранул
0,1 – 1 мм (100 – 1000 микрон), способны эффективно
задерживать частицы примерно такого
же размера. Большая часть нерастворенных
в воде частиц имеет гораздо меньший -
0,1-20 микрон - размер. Правда, микроорганизмы
не задерживаются при механической фильтрации,
так как их размер – 0,4 – 3 микрона.
Механическая
фильтрация широко применяется на муниципальных
станциях водоочистки. Этот вид очистки
особенно актуален при заборе воды из
открытых источников: рек, озер, водохранилищ.
В городских квартирах механическая
фильтрация представлена использованием
предфильтров (фильтров предварительной
очистки).
б) сорбция, сорбенты,
сорбционные фильтры. Сорбцией называют
поглощение примесей из газа или жидкости
твердыми телами, которые называют сорбентами.
Процесс сорбционной
очистки состоит в пропускании газа или
жидкости через сосуд, заполненный сорбентом
– сорбционный фильтр. Если режим фильтрации
и сорбент выбраны правильно, то достигается
желаемый результат – удаление из газа
или жидкости вредных примесей. Именно
так работают противогазы и фильтры для
воды.
Не будет сильным преувеличением
сказать, что сорбционные фильтры – это
в первую очередь угольные фильтры. Активированные
угли – наиболее широко используемые
сорбенты, производимые миллионами тонн
в год. Это универсальные сорбенты, применяемые
для удаления примесей самой различной
химической природы.
Активация позволяет
получить сорбент с площадью пор около
1000-1500 квадратных метров на 1 грамм угля.
Эти чрезвычайно высокие величины и объясняют
необычайно высокую эффективность активированных
углей.
в) ионный обмен – это
специфический случай сорбции заряженных
частиц (ионов), когда поглощение одного
иона сопровождается выходом в раствор
другого иона, входящего в состав сорбента.
При этом ион, присутствие которого в воде
нежелательно, фиксируется на сорбенте.
Таким образом, происходит «замещение»
одних ионов (назовем их «вредными») на
другие (назовем их «безвредными»).
Сорбенты, работающие
по такому механизму, называются ионообменными
материалами или ионитами. Иониты способны
извлекать из воды одни растворенные соли,
замещая их другими солями (например, соли
кальция и магния могут заменяться на
соли натрия).
Чаще всего в процессе
водоочистки ионный обмен используется
для удаления из воды катионов тяжелых
металлов (например, свинца), представляющих
опасность для здоровья человека, а также
для избавления от нитратов.
Еще одно из применений
ионитов – умягчение жесткой воды, то
есть удаление из воды избыточного содержания
ионов кальция и магния.
Существенной характеристикой
ионообменных смол является их обменная
емкость, то есть способность «заместить»
определенное количество «вредных» ионов.
Одно из главных свойств ионообменных
смол – это их способность к регенерации
после исчерпания «ресурса».
г) обратный осмос –
это очистка воды при помощи обратноосмотической
мембраны. Вода при таком способе очистки
пропускается через мембрану (своеобразное
«сито»), поры которой пропускают воду,
но не пропускают растворенные в ней примеси
(правда, установка не пропускает никакие
примеси - ни вредные, ни полезные).
Система обратного
осмоса позволяет получать воду очень
высокой степени очистки (близкую к дистиллированной).
Обратным осмосом можно удалять из воды
даже одновалентные ионы, например, ионы
натрия и хлора.
Обратноосмотические
установки обязательно должны содержать
активированный уголь, так как сама мембрана
не задерживает низкомолекулярную высоколетучую
органику (типа хлороформа) и бактерии.
Качество воды, профильтрованной
такой установкой, стабильно.
д) электрохимическая
очистка - основана на сложных окислительно-восстановительных
реакциях, которые происходят в воде при
воздействии на нее сильного электрического
тока и приводят к образованию так называемой
«живой» и «мертвой» воды.
Этот способ экономичен,
так как позволяет достигнуть высокой
производительности при небольших затратах.
Электрохимическая
очистка распространена в России, но не
применяется в быту на Западе (используется
только для промышленной очистки, но не
для очистки питьевой воды).
Электрохимическая
очистка действительно позволяет очистить
воду от всех микроорганизмов. Но при этом
разрушается также часть органических
веществ. Кроме того, поскольку точный
состав исходной воды неизвестен, никто
не знает, как при воздействии на эту воду
сильного электрического тока содержащиеся
в ней вещества прореагируют между собой.
В результате этих реакций могут получиться
совсем «несъедобные» соединения.
е) дистилляция – менее
распространенный вид очистки воды. В
дистилляционных системах вода сначала
испаряется, а затем конденсируется.
То есть, дистилляция
– процесс очистки жидкостей, заключающийся
в испарении жидкости с последующей конденсацией
пара. При этом происходит разделение
жидких многокомпонентных смесей на отличающиеся
по составу фракции путем частичного испарения
смеси и конденсации образующихся паров.
Методом дистилляции
можно отделить жидкость от растворенных
в ней твердых веществ или жидкостей с
сильно отличающимися температурами кипения.
Дистиллированная вода относительно чистая,
но процесс дистилляции достаточно дорог.
Дистилляционные системы
также должны обязательно содержать активированный
уголь, так как нет другого способа убрать
низкомолекулярную высоколетучую органику
(типа хлороформа).
В
данной курсовой работе будет рассмотрен
один из электрохимических методов обработки
воды – электокоагуляция.
2 ОЧИСТКА ВОДЫ МЕТОДОМ ЭЛЕКТРОКОАГУЛЯЦИИ
Грязная вода представляет
собой многокомпонентную гетерогенную
систему, включающую грубодисперсные,
коллоидные, молекулярные и истинно растворённые
вещества. Кроме того, вода является электролитом,
так как растворённые в ней газы, минеральные
и органические вещества в той или иной
степени диссоциированы на ионы, а коллоидные
и взвешенные включения в большинстве
случаев несут определённый заряд.
При погружении в воду электродов
и подаче на них напряжения достаточной
величины наблюдается перенос электрических
зарядов движущимися к электродам ионами
в обрабатываемой жидкости и электронами
во внешней цепи, то есть появляется электрический
ток (ток коагулирования). При этом на поверхности
электродов и в межэлектродном пространстве
протекают разнообразные электрохимические
процессы.
В случае применения металлических
электродов, электродный процесс сопровождается
совокупностью электрохимических явлений
и реакций, скорость которых, согласно
законам электрохимической кинетики,
определяется общим значением потенциала
на границе металл-раствор, составом раствора
и условиями диффузии компонентов или
продуктов реакции в растворе. В результате
электролиза на катоде происходит выделение
газообразного водорода, разряд растворённых
в воде ионов и органических веществ с
образованием новых соединений и ионов.
На анодах из материалов, не
подвергающихся электролитическому растворению,
в зависимости от солевого состава сточных
вод и условий электролиза выделяются
кислород и галогены, окисляются некоторые
присутствующие в сточных водах ионы и
органические соединения с образованием
новых веществ и ионов. При использовании
анодов из железа, алюминия, титана и других
металлов происходит их электролитическое
растворение и переход в сточную воду
ионов этих металлов. Образовавшиеся соединения
обладают способностью к коагуляции.
Таким образом, при электролизе
загрязнённых вод протекают различные
физико-химические процессы, обусловливающие
эффект очистки данных вод от растворённых
и диспергированных примесей.
Электрохимические способы
очистки условно можно разделить на способы,
в которых электроэнергия используется
для создания газовых пузырьков (электрофлотация),
или для образования в массе жидкости
гидроксидов металлов с высокоразвитой
поверхностью (электрокоагуляция), или
для электрохимических превращений веществ,
приводящих к образованию малотоксичных
и легко удаляемых соединений (электрохимическая
деструкция). Деление это условное, т.к.
в процессе электрофлотации возможно
частичное растворение анодов с образованием
гидроксидов и, как следствие, коагуляция
присутствующих в исходной воде коллоидов.
Данный процесс может приводить к дополнительной
очистке воды за счёт адсорбционной способности
образовавшегося геля (хлопьев). В процессе
электрофлотации не исключены также процессы
окисления и восстановления некоторых
загрязнений. С другой стороны, процесс
деструкции органических соединений всегда
сопровождается обильным газовыделением,
что приводит к частичному переносу загрязняющих
веществ в поверхностный слой. Электрокоагуляция
также всегда сопровождается и флотацией,
и восстановлением – окислением примесей
или, как в нашем случае, синтезом веществ,
имеющих свойства, отличные от свойств
первоначальных загрязнений. Существенным
преимуществом метода электрохимического
окисления и восстановления является
то обстоятельство, что для проведения
реакции не требуется введения в раствор
дополнительных химических реагентов,
а достаточно лишь применения электрического
тока, следовательно, исходное солесодержание
очищаемой воды остаётся неизменным.