Автор работы: Пользователь скрыл имя, 14 Января 2014 в 20:34, контрольная работа
Геология- комплекс наук о составе, строении, истории развития Земли, движениях земной коры и размещении в недрах Земли полезных ископаемых. Основным объектом изучения, исходя из практических задач человека, является земная кора.
В последние десятилетия особое развитие получила инженерная геология – наука, изучающая свойства горных пород (грунтов), природные геологические и техногенно - геологические (инженерно- геологические) процессы в верхних горизонтах земной коры в связи со строительной деятельностью человека.
1. Введение
2. Основная часть
3. Список использованных источников
Наблюдательные скважины для прослеживания передвижения индикаторов закладываются ниже по потоку на расстоянии от 0,5 до 2 м в суглинистых и супесчаных породах, от 2 до 8ь в песчаных зернистых породах, от 3 до 15 в гравийно–галечных породах, от 15 до 30 в закарстованных породах. Количество наблюдательных скважин (односкважинные методы) если для таких определений используются данные наблюдений за изменением концентрации индикатора во времени или за его распространением непосредственно в пусковой скважине(фотографирование конусов распространения красителей).
Появление индикатора в наблюдательных скважинах устанавливается химически, электролитическим и колориметрическим способами, при этом первые два дают наиболее надежные результаты.
При химическом способе появления индикатор устанавливается по изменению его концентрации в периодически отбираемых из наблюдательных скважин конусах воды. Для более точного и обоснованного установления момента появления индикатора в наблюдательной скважине результаты определения изображаются в виде графика изменения концентрации индикаторов во времени С=F(t)/ время прохождения индикатора от пусковой скважины tмакс исчисляется с момента его запуска в пусковую скважину до момента максимальной концентрации индикатора в наблюдательной скважине (Рис. 7).
Рис.7 График изменения концентрации индикаторов во времени.
Изменение концентрации индикатора С в наблюдаемой скважине во времени t :
1-точка появления индикатора в наблюдательной скважине,
2-точка максимальной концентрации индикатора.
Действительная скорость движения подземных вод Vδ определяется как частное от деления пройденного индикатором расстояния L на время :
Vδ=L/ tмакс
Радиоиндикаторные методы.
В последние годы все более широкое применение для определения направления в скорости движения подземных вод, а также для решения многих других практических задач приобретают радиоиндикаторные методы. В качестве индикаторов для мечения воды используются различные радиоизотопы. Контрольным перемещением изотопов ведется по замерам интенсивности излучения их концентрации. Возможность использования радиоактивных индикаторов низких концентрацией, их сравнительно незначительная сорбционная способность и высокая точность определений предопределяют большие перспективы применения радиоиндикаторных методов для решения гидрогеологических задач и , в частности, для определения направления и скорости движения подземных вод. Наибольшее применение в качестве индикаторов находят различные соединения.
Радиоиндикаторные методы применяются в различных вариантах и модификациях.
Суть односкважинного радиоиндикаторного метода заключается в проведении наблюдений за изменением во времени концентрации введенного в скважину радиоактивного индикатора. Изменения концентрации индикатора во времени и эпюры распределения его активности , получаемые с помощью зонда, опускаемого в скважину, являются основанием для определения расхода, скорости и направления движения потока подземных вод. Особенно эффективным является этот метод при импульсном поведении радиоиндикаторов.
Измеряя в разменые моменты времени силу тока в цепи, можно определить электропроводимость воды в наблюдательной скважине и тем самым установить момент появления в ней соли.
Колометрический
метод заключается в
Чаще всего принимают следующие красящие вещества, причём количество их зависит от длины пути движения подземных вод между пусковой и наблюдательной скважинами.
Таблица 7
Красящее вещество |
Количество в гаммах сухой навески на каждые 5м пути для горных пород | ||
рыхлых |
Трещиновых и закарстованных | ||
Флюресцин |
1-5 |
1-10 | |
Флюорантрон |
1-5 |
1-10 | |
Эозин |
5-1 |
1-10 | |
Эринтрозин |
5-15 |
5-20 | |
Красное бонго |
10-30 |
10-40 | |
Метиленовая синька |
10-30 |
10-40 | |
Анилиновая голубая |
10-30 |
10-40 | |
Понсо красная 2К |
5-15 |
5-20 |
Указанные красящие вещества в виде раствора в щелочи или в слабой кислоте (2-4см3 на 1г. вещества) запускаются в пусковую скважину так же, как и при химическом методе. Взятие пробы воды из наблюдательной скважины производится так же как и при химическом методе. Перед взятием пробы вода должна быть перемешана. Первая проба берётся до запуска красящего вещества.
Наличие красящего
вещества в пробе воды и степень
концетрации его
Все наблюдаеме
во время опыта величины следует
фиксировать в специальном
абсолютные отметки кровли и подошвы водоносного горизонта и поверхности земли;
абсолютные отметки верха трубы забоя, уровня воды, глубины скважины;
разрез по главному створу с показанием состава пород, зеркала воды и конструкции скважины;
план расположения скважины с показанием расстояния между ними;
данные непосредственных ответов концентрации раствора (если применяется химический метод) или силы тока (если применяется электролитический метод) и время, соответствующее этим отсчётам.
Обработка материалов заключается в построении кривой концентрации, показанной на Рис.8.
Рис.8 График построения кривой концентрации.
На вертикальной
оси откладывается в
На горизонтальной оси откладывается время в часах. Скорость рассчитывается по формуле: , в которой величина t определяется из графика рис.5.
Поскольку появление раствора в наблюдательной скважине происходит постепенно и нарастание концентрации занимает некоторый период времени, иногда представляется затруднительным выбор той точки на кривой в пределах от N1 до N2, до которой надлежит отсчитывать значение времени t. При этом N1 соответствует появлению индикатора в скважине, а N2- моменту наибольшей концентрации.
При этом руководствуются следующими собраниями. Если скорость движения подземных вод определяется для целей составления проекта водоснабжения, следует брать время t, соответствующее точке N2; это определяет наименьшее значение скорости. Если скорость движения подземных вод определяется для установления водопротока в горные выработки или под гидросооружениями, следует брать время t, соответствующее точке N1, это определит наибольшее значение скорости. В ряде случаев применяют в место индикаторов радиоактивные изотопы некоторых элементов (геофизические методы).
Для изучения движения подземных вод наряду с индикаторными методами широко применяются полевые и скважинные геофизические методы. К подовым следует отнести методы электропрофилирования, вертикального электрического, кругового и частотных зондирований, естественного электрического поля, с помощью этих методов иногда удаётся установить направление движения потока, обнаружить скрытые под наносами родники и места утечек поверхностных вод из русел рек, озёр и водохранилищ.
Другую группу составляют скважинные способы исследования: резистивиметрия и термометрия, метод заряженного тела и др. Они применяются для определения мест притоков подземных вод в скважину и выделения зоны активного водообмена, определения направления и действительной скорости движения подземных вод по группам и одиночным скважинам.
Наиболее
высокая эффективность
3 Список использованных источников