Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении

Автор работы: Пользователь скрыл имя, 28 Мая 2013 в 20:02, курсовая работа

Описание работы

В восточной, юго-западной и северной частях месторождения расположены охранные зоны: Пихтовские пруды, Воткинский пруд и леса I категории, р. Вотка. Кроме того, граница водоохранных зон составляет: Воткинский пруд - 500 м, Пихтовские пруды - 300 м, р. Вотка – 200 м. Бурение под охранные зоны в настоящее время затруднено из-за невозможности получить от государства разрешение на подготовку кустов, расположенных в этих зонах. В непосредственной близости от Мишкинского месторождения расположены: западнее - Лиственское месторождение, севернее – Шарканское месторождение, на некотором удалении северо-западнее – Быгинское, Черновское, Южно-Лиственское месторождения.

Содержание работы

1. Геологический раздел
1.1 Общие сведения о месторождении
1.2 Геолого-физическая характеристика месторождения
1.3 Физико-гидродинамическая характеристика продуктивных коллекторов, вмещающих пород и покрышек
1.4 Состав, свойства нефти, газа, конденсата и воды
1.5 Запасы нефти
Выводы по геологическому разделу
2. Технологический раздел
2.1 Текущее состояние разработки
2.2 Технико-эксплуатационная характеристика фонда скважин
2.3 Осложнения при эксплуатации скважин, оборудованных УЭЦН
2.4 Обработка скважин с УЭЦН соляной кислотой
Выводы по технологическому разделу.
3. Экономический раздел
3.1 Обоснование показателей экономической эффективности
3.2 Нормативная база и исходные данные для расчета экономических показателей
3.3 Расчет экономических показателей
Выводы по экономическому разделу
Заключение
Список использованной литературы

Файлы: 1 файл

Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении.doc

— 484.50 Кб (Скачать файл)

 

Мишкинское месторождение  находится на III стадии разработки.

На Мишкинском месторождении, согласно технологической схеме, выделено 4 объекта разработки: верейский (I) –  пласты В-II, B-III верейского горизонта, башкирский (II) – пласт А4 башкирского яруса, визейский (III) – пласты С-II–C-VII визейского яруса и турнейский (IV) ) – пласты Ct-III, Ct-IV турнейского яруса. В разработке находятся два поднятия Воткинское и Черепановское.

По I, II и III объектам технологической схемой предусматривался переход от реализованной треугольной сетки 500×500 м (семиточечный площадной элемент) к уплотненной сетке 250×500 м (тринадцатиточечный площадной элемент).

Уплотнение практически  полностью реализовано на II и III объектах и частично на I объекте, где переход на сетку 250×500 м произведен в западной части Воткинского поднятия. Непробуренные проектные скважины в основном располагаются на периферийных участках объектов, а также в элементах где предусматривался переход на уплотняющую сетку.

В 2000 году ТКР утвержден отчет по теме "Дополнение к технологической схеме разработки Мишкинского месторождения (Черепановское поднятие)" (протокол ТКР № 15 от 23.11.2000 г.).

Утвержденный вариант  предусматривал следующие основные положения:

- выделение двух эксплуатационных объектов разработки: верейский и турнейский;

- разработка верейского  объекта самостоятельной сеткой  вертикальных и горизонтальных  скважин 400×400 м при площадной  системе заводнения;

- разработка турнейского  объекта имеющимися разведочными  скважинами с довыработкой запасов боковыми горизонтальными стволами;

- общий фонд скважин  – 48, в т.ч. добывающих –  35, нагнетательных - 13;

- фонд скважин для  бурения – 42, в том числе 23 горизонтальные;

- резервный фонд –  6 скважин;

- механизированный способ  эксплуатации.

Сопоставление фактических  показателей разработки по Мишкинскому месторождению за период 2002-2006 г.г. проведено в соответствии с проектными документами: "Технологическая схема разработки Мишкинского нефтяного месторождения" от 1986 года (верейский, башкирский и яснополянский объекты); "Дополнение к технологической схеме разработки Мишкинского месторождения с разбуриванием черепетской залежи горизонтальными скважинами" от 1995 года (турнейский объект); "Дополнение к технологической схеме Мишкинского месторождения (Черепановское поднятие)" от 2000 года; "Авторский надзор за разработкой Мишкинского месторождения" от 2001 года и 2004 года.

 

2.2 Технико-эксплуатационная характеристика фонда скважин

 

Добыча нефти ведется  механизированным способом. Коэффициент использования фонда составляет 0,927. По состоянию на 01.07.2007 г. на месторождении числится 1300 скважин. Из них 877 добывающих, в том числе 813 действующих, 248 нагнетательных, в том числе 216 действующих, 92 контрольных и 26 поглощающих скважины (серпуховские отложения), 33 скважины в консервации и 25 ликвидированы. Характеристика фонда скважин приведена в таблице 8. Общий добывающий фонд месторождения составляет 877 скважин, в т.ч. 813 скважин эксплуатационного фонда, 33 в консервации и 24 ликвидированы. Из скважин эксплуатационного фонда действующими являются 813, в бездействии находится 64 скважины, основной способ добычи ШГН (650 скв. – 80%).

 

Таблица 8. – Характеристика фонда скважин по состоянию на 01.07.2007 г.

 

Разработка месторождения  осуществляется при поддержании пластового давления. Для этих целей пробурено 246 нагнетательных скважин, 129 скважин переведены из добывающих, 4 скважины возвращены с других пластов. По состоянию на 1.01.07 г. эксплуатационный нагнетательный фонд состоит из 246 скважины, из которых под закачкой находятся 216, в бездействии – 18.

 

2.3 Осложнения при эксплуатации скважин, оборудованных ЭЦН

 

В данный момент на Мишкинском месторождении 17 % фонда эксплуатируется  установками электроцентробежных  насосов, в основном этот фонд является высокодебитным и отказы на этих скважинах сопровождаются большими затратами. В процессе эксплуатации скважин оборудованных УЭЦН приходится неизбежно сталкиваться с проблемами снижения производительности, нестабильной работой насоса, заклиниванием УЭЦН . Анализируя распределение отказов УЭЦН за 2008 год по причинам (график 1), видим что основной и главной причиной является засорение механическими примесями рабочих органов установок (составляет 47 % от общего числа отказов), далее– снижение производительности УЭЦН и заклинивание рабочих агрегатов установки. Химический состав механических примесей будет различным в зависимости от объекта разработки (рис. 3,4,5), но для всех объектов характерна одна картина, это высокое содержание сульфидов железа которое колеблется от 50 до 70%, такое высокое содержание не может не влиять на нормальную работу оборудования, далее по содержанию преобладают гипс и соли. Эти отложения называют сульфидосодержащими отложениями: в условиях месторождений Удмуртии это, в основном, гипсосульфидоуглеводородные (CaSO3 + FeS + АСПО) и карбонатосульфидоуглеводородные (CaCO3 + FeS + АСПО) отложения. Сульфид железа представляет собой рыхлую черную массу, которая хорошо агрегатируется с другими солями и АСПО, часто играет роль стимулятора образования солей и АСПО в зоне приема насоса, забивая при этом фильтры и рабочие органы насосов, которые в обычных условиях находятся ниже интервала образования АСПО. Работы многих ученых нефтяной отрасли и данные промысловых исследований показывают, что сульфиды железа образуются в большей части в призабойной части пласта при наличии железосодержащей воды и сероводорода в результате изменения термобарических условий при движении жидкости. Образованные "хлопья" сульфида железа, соединяясь с кристаллами других солей и агломератами АСПО, образуют сульфидосодержащие осадки на поверхности оборудования и рабочих органах насосов.

Причины отказов УЭЦН

 

 

 

 

 

Интенсивное перемешивание  пластовых жидкостей в рабочих  органах насосных установок и  последующая адсорбция природных стабилизаторов на межфазной поверхности приводит к тому, что в массе самой жидкости и на поверхности оборудования образуются кристаллы и агрегаты самых различных солей в сочетании с мех. примесями и АСПО, приводящие в конечном счете к отказу насосного оборудования.

Наиболее эффективными методами борьбы с солеотложениями  в ПЗП, в скважинах и скважинном оборудовании являются методы предупреждения отложений. В зависимости от условий  образования и разновидности  и химического состава солей методы предупреждения солеотложений могут быть самыми различными. Однако после группирования их по основным направлениям работы по борьбе с наиболее часто встречающимися солями можно назвать следующие методы предупреждения солеотложений:

  • прогнозирование интенсивности солеотложений
  • обработка призабойных зон ингибиторами солеотложений ( или бактерицидами-поглотителями сероводорода для предупреждения отложений сульфида железа)
  • постоянно дозировать в затрубное пространство скважин соответствующие ингибиторы
  • периодически заливать в затрубное пространство расчетное количество ингибитора
  • для ППД применять вместо пресной воды подтоварную
  • периодически обрабатывать закачиваемую в систему ППД воду бактерицидом для снижения в пласте СВБ и сероводорода.

Эффективность данных методов обработки не всегда дает необходимый результат, а применение новых высокоэффективных методов экономически не выгодны или технологически невозможны.

 

2.4 Обработка скважин с УЭЦН соляной кислотой

 

При работе с данным фондом предлагается применять соляно-кислотную обработку (СКО), (при условии, что другие методы воздействия и обработки оказались неэффективны), которая по своей результативности превосходит применяемые сегодня технологии восстановления работоспособности УЭЦН. Критерием выбора именно технологии СКО являются следующие основные причины:

  • При расследовании причин отказа УЭЦН в предыдущих ремонтах сделано заключение о причинах отказа в результате солеотложений в рабочих органах УЭЦН и фильтре.
  • Снижение подачи УЭЦН достигает 15-30
  • Частые остановки УЭЦН по причине "защита от перегруза".
  • Остановка УЭЦН по причине заклинивания.
  • Предыдущие СКО были результативными.
  • Отсутствие специальных реагентов - удалителей солей.
  • Отсутствие осложняющих факторов при СКО.

Технология проведения СКО не отличается сложными операциями, наоборот является достаточно простой, но при своей простоте показывает достаточно хорошие результаты. Приготовленный слабокислотный раствор закачивается в затрубное пространство при работающей установке, далее пачка кислоты продавливается расчетным объемом продавочной жидкости. после прокачки кислоты установка останавливается на время реагирования, время реакции определяется с учетом выявленных ранее осложняющих факторов и их процентного содержания и опыта проведения СКО на данной скважине.

После производится пуск установки, неотреагировавшая кислота  отбирается в агрегат с последующей  закачкой в ПЗП поглощающих скважин, тем самым мы минимизируем отрицательное  влияние кислоты на систему сбора  и подготовки продукции.

В случае незапуска УЭЦН необходимо иметь дополнительный объем жидкости для принудительного подъема кислота из скважины с дальнейшей утилизацией ее в нагнетательной скважине.

Из комплексных отложений  на оборудовании УЭЦН соляная кислота  реагирует сульфидами железа, окислами железа и карбонатами. Реагируя с сульфидами железа соляная кислота образует сероводород H2S и растворимую в воде FeCl2, причем в зависимости от количества солей выделенное количество сероводорода может быть значительным. В результате реакции соляной кислоты с карбонатами образуется хлористый кальций, углекислый газ и вода. Исходя из этого требуется добавлять в кислоту и продавочную жидкость соответствующие ингибиторы и добавочные химреагенты.

Технологические показатели операции СКО УЭЦН:

  • Концентрация соленой кислоты - 5-6%
  • Обьем раствора соляной кислоты - 3м3
  • Добавка ингибитора коррозии в раствор кислоты - 0,5%
  • Количество продавочной пластовой воды - по расчету
  • Добавка в продавочную жидкость нейтрализатора сероводорода (СНПХ - 1100, ЛПЭ-32, сонцид 8102) - 500г/м3
  • Добавка ингибитора солеотложений в продавочную жидкость - 60-150 г/м3

Объем продавочной жидкости (пластовой воды) при обратной закачке  кислоты рассчитывается по формуле:

 

Vпр = 0,785 * (D2э.к.-d2нкт) * L эцн + 0,5 (м3);

 

где:

  • Lэцн - глубина спуска ЭЦН по стволу скважины (м)
  • Dэ.к - внутренний диаметр эксплуатационной колонны(м)
  • d нкт - наружный диаметр НКТ (м)

Рассмотрим эффективность  технологии на примере восстановления производительности установки на СКВ 4021 (график 2)

Видно, что установка  работала со стабильным снижением дебета, был закачен реагент РАСПО в объеме 500кг, был полечен непродолжительный результат после сего была проведена промывка с реагентом, со временем дебет упал в 3 раза от начального, было принято решение о проведении СКО. В результате чего был получен положительный эффект. В результате проведенной СКО был предотвращен ТРС, восстановлена производительность УЭЦН, продолжительность эффекта сохраняется и составляет более 180 сут, а общая наработка скважины составляет более 350сут.

 

График 2. Дебет нефти по скв. 4021

 

 

График 3. Эффективность солянокислотных обработок

 

Выводы по технологическому разделу

Всего в 2008 году в НГДУ "Воткинск" было проведено 42 обработки, из них 25 были результативными и на 9 из них мы получили долгосрочный эффект.

Анализируя результаты проведения СКО по скважинам видно  что из 28 обработанных скважин на 20 был получен эффект и в 10 из них  был предотвращен ТРС.

В процентном соотношении  эффективность по скважинам достигает 71% , а по обработкам 76%. (график 3.)

Неэффективность СКО  объясняется отсутствием опыта  применения данной технологии в условиях наших месторождений. Проводились обработки установок, которые по результатам расследований признавались полностью неработоспособными по причине полного износа рабочих органов, заводского брака, слома вала и т.д.

 

 

3. Экономический раздел

 

3.1 Обоснование показателей экономической эффективности

 

Основная цель расчетов – экономическая оценка предлагаемого  решения по проведению соляно-кислотных  обработок скважин оборудованных УЭЦН, отвечающая критерию достижения максимального экономического эффекта от возможно более полного удаления механических примесей на приеме насоса, предотвращения ТРС, снижения затрат на эксплуатацию УЭЦН.

В данной работе проведена  экономическая оценка проведения СКО УЭЦН в НГДУ "Воткинск" за 2008 год.

Экономическая оценка вариантов  произведена на основании РД 153-39-007-96 с использованием следующих основных показателей эффективности:

  • дисконтированный поток наличности (NPV);
  • индекс доходности (PI);

В систему оценочных  показателей также включены:

Информация о работе Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении