Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 09:01, реферат
Образование углеводородных ископаемых, согласно современным воззрениям, происходило в результате протекания сложной последовательности геохимических процессов (см. рис. 1) внутри исходных газонефтеродных горных пород. В этих процессах составные части различных биологических систем (веществ природного происхождения) превращались в углеводороды и в меньшей степени в полярные соединения с различной термодинамической устойчивостью - в результате осаждения веществ природного происхождения и последующего их перекрывания осадочными породами, под влиянием повышенной температуры и повышенного давления в поверхностных слоях земной коры.
1. ГЕОХИМИЯ НЕФТИ И РАЗВЕДКА ГОРЮЧИХ ИСКОПАЕМЫХ 3 стр.
1.1. Происхождение горючих ископаемых. 3 стр.
1.2. Газонефтеродные горные породы. 4 стр.
2. ПРИРОДНЫЕ ИСТОЧНИКИ 5 стр.
3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ 8 стр.
4. ПЕРЕРАБОТКА НЕФТИ 9 стр.
4.1. Фракционная перегонка 9 стр.
4.2. Крекинг 12 стр.
4.3. Риформинг 13 стр.
4.4. Очистка от серы 14 стр.
5. ПРИМЕНЕНИЯ УГЛЕВОДОРОДОВ 14 стр.
5.1. Алканы 16 стр.
5.2. Алкены 17 стр.
5.3. Алкины 19 стр.
5.4. Арены 19 стр.
6. Особенности и основные тенденции деятельности нефтяной промышленности. 20 стр.
Список использованной литературы 27 стр.
Министерство образования и науки РФ
Волгоградский
государственный технический
Автотракторный факультет
Кафедра «Техническая эксплуатация и ремонт автомобилей»
Дисциплина «Химология»
Семестровая работа
Процесс добычи, переработки и использования углеводородов.
Выполнил: стд. гр. ТС – 303
Комаров Д.С.
Проверил: Бойко Г. В.
Волгоград
2013
Оглавление:
1. ГЕОХИМИЯ НЕФТИ И РАЗВЕДКА ГОРЮЧИХ ИСКОПАЕМЫХ 3 стр.
1.1. Происхождение горючих ископаемых. 3 стр.
1.2. Газонефтеродные горные породы. 4 стр.
2. ПРИРОДНЫЕ ИСТОЧНИКИ 5 стр.
3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ 8 стр.
4. ПЕРЕРАБОТКА НЕФТИ 9 стр.
4.1. Фракционная перегонка 9 стр.
4.2. Крекинг 12 стр.
4.3. Риформинг 13 стр.
4.4. Очистка от серы 14 стр.
5. ПРИМЕНЕНИЯ УГЛЕВОДОРОДОВ 14 стр.
5.1. Алканы 16 стр.
5.2. Алкены 17 стр.
5.3. Алкины 19 стр.
5.4. Арены 19 стр.
6. Особенности и основные тенденции деятельности нефтяной промышленности. 20 стр.
Список использованной литературы 27 стр.
Первые теории,
в которых рассматривались
Образование углеводородных ископаемых, согласно современным воззрениям, происходило в результате протекания сложной последовательности геохимических процессов (см. рис. 1) внутри исходных газонефтеродных горных пород. В этих процессах составные части различных биологических систем (веществ природного происхождения) превращались в углеводороды и в меньшей степени в полярные соединения с различной термодинамической устойчивостью - в результате осаждения веществ природного происхождения и последующего их перекрывания осадочными породами, под влиянием повышенной температуры и повышенного давления в поверхностных слоях земной коры. Первичная миграция жидких и газообразных продуктов из исходного газонефтеродного слоя и последующая их вторичная миграция (через несущие горизонты, сдвиги и т. п.) в пористые нефтенасыщенные горные породы приводит к образованию залежей углеводородных материалов, дальнейшая миграция которых предотвращается запиранием залежей между непористыми слоями горных пород.
В экстрактах органического вещества из осадочных горных пород биогенного происхождения обнаруживаются соединения с такой же химической структурой, какую имеют соединения, извлекаемые из нефти. Для геохимии имеют особо важное значение некоторые из таких соединений, которые считаются «биологическими метками» («химическими ископаемыми»). Подобные углеводороды имеют много общего с соединениями, встречающимися в биологических системах (например, с липидами, пигментами и метаболитами), из которых произошло образование нефти. Эти соединения не только демонстрируют биогенное происхождение природных углеводородов, но и позволяют получать очень важную информацию о газонефтеносных горных породах, а также о характере созревания и происхождения, миграции и биоразложения, приведших к образованию конкретных месторождений газа и нефти.
Рисунок 1 Геохимические процессы, приводящие к образованию ископаемых углеводородов.
Газонефтеродной горной породой считается мелкодисперсная осадочная порода, которая при естественном осаждении привела или могла привести к образованию и выделению значительных количеств нефти и (или) газа. Классификация таких горных пород основана на учете содержания и типа органического вещества, состояния его метаморфической эволюции (химических превращений, происходящих при температурах приблизительно 50-180 °С), а также природы и количества углеводородов, которые могут быть получены из него. Органическое вещество кероген в осадочных горных породах биогенного происхождения может обнаруживаться в самых разнообразных формах, но его можно подразделить на четыре основных типа.
Липтиниты – имеют очень высокое содержание водорода, но низкое содержание кислорода; их состав обусловлен наличием алифатических углеродных цепей. Предполагается, что липтиниты образовались в основном из водорослей (обычно подвергшихся бактериальному разложению). Они имеют высокую способность к превращению в нефть.
Экзтиты – имеют высокое содержание водорода (однако ниже, чем у липтинитов), богаты алифатическими цепями и насыщенными нафтенами (алицик-лическими углеводородами), а также ароматическими циклами и кислородсодержащими функциональными группами. Это органическое вещество образуется из таких растительных материалов, как споры, пыльца, кутикулы и другие структурные части растений. Экзиниты обладают хорошей способностью к превращению в нефть и газовый конденсат, а на высших стадиях метаморфической эволюции и в газ.
Витршиты – имеют низкое содержание водорода, высокое содержание кислорода и состоят в основном из ароматических структур с короткими алифатическими цепями, связанными кислородсодержащими функциональными группами. Они образованы из структурированных древесных (лигноцеллюлозных) материалов и имеют ограниченную способность превращаться в нефть, но хорошую способность превращаться в газ.
Инертиниты – это черные непрозрачные обломочные породы (с высоким содержанием углерода и низким содержанием водорода), которые образовались из сильно изменившихся древесных предшественников. Они не обладают способностью превращаться в нефть и газ.
Главными факторами, по которым распознается газонефтеродная порода, являются содержание в ней керогена, тип органического вещества в керогене и стадия метаморфической эволюции этого органического вещества. Хорошими газонефте-родными породами считаются те, которые содержат 2-4% органического вещества такого типа, из которого могут образовываться и высвобождаться соответствующие углеводороды. При благоприятных геохимических условиях образование нефти может происходить из осадочных пород, содержащих органическое вещество типа липтинита и экзинита. Образование месторождений газа обычно происходит в горных породах, богатых витринитом или в результате термического крекинга первоначально образовавшейся нефти.
В результате последующего погребения осадков органического вещества под верхними слоями осадочных пород это вещество подвергается воздействию все более высоких температур, что приводит к термическому разложению керогена и образованию нефти и газа. Образование нефти в количествах, представляющих интерес для промышленной разработки месторождения, происходит в определенных условиях по времени и температуре (глубине залегания), причем время образования тем больше, чем ниже температура (это нетрудно понять, если предположить, что реакция протекает по уравнению первого порядка и имеет аррениусовскую зависимость от температуры). Например, то же количество нефти, которое образовалось при температуре 100°С приблизительно за 20 миллионов лет, должно образоваться при температуре 90 °С за 40 миллионов лет, а при температуре 80°С – за 80 миллионов лет. Скорость образования углеводородов из керогена приблизительно удваивается при повышении температуры на каждые 10°С. Однако химический состав керогена. может быть чрезвычайно разнообразным, и поэтому указанное соотношение между временем созревания нефти и температурой этого процесса может рассматриваться лишь как основа для приближенных оценок.
Современные геохимические исследования показывают, что в континентальном шельфе Северного моря увеличение глубины на каждые 100 м сопровождается повышением температуры приблизительно на 3°С, а это означает, что богатые органическим веществом осадочные породы образовывали жидкие углеводороды на глубине 2500-4000 м в течение 50-80 миллионов лет. Легкие нефти и конденсаты, по-видимому, образовывались на глубине 4000-5000 м, а метан (сухой газ) – на глубине более 5000 м.
Природными
источниками углеводородов
Природный газ и сырая нефть обычно обнаруживаются вместе с водой в нефтеносных слоях, расположенных между слоями горных пород (рис. 2). Термин «природный газ» применим также к газам, которые образуются в природных условиях в результате разложения угля. Природный газ и сырая нефть разрабатываются на всех континентах, за исключением Антарктиды. Крупнейшими производителями природного газа в мире являются Россия, Алжир, Иран и Соединенные Штаты. Крупнейшими производителями сырой нефти являются Венесуэла, Саудовская Аравия, Кувейт и Иран.
Природный газ состоит главным образом из метана (табл. 1).
Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной – от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 40. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.
Рисунок 2 Природный газ и сырая нефть обнаруживаются в ловушках между слоями горных пород.
Таблица 1 Состав природного газа
Компоненты |
Формула |
Содержание,% |
Метан |
СН4 |
88-95 |
Этан |
С2Н6 |
3-8 |
Пропан |
С3Н8 |
0,7-2,0 |
Бутан |
С4Н10 |
0,2-0,7 |
Пентан |
С5Н12 |
0,03-0,5 |
Диоксид углерода |
СО2 |
0,6-2,0 |
Азот |
N2 |
0,3-3,0 |
Гелий |
Не |
0,01-0,5 |
Уголь является древнейшим источником энергии, с которым знакомо человечество. Он представляет собой минерал (рис. 3), который образовался из растительного вещества в процессе метаморфизма. Метаморфическими называются горные породы, состав которых подвергся изменениям в условиях высоких давлений, а также высоких температур. Продуктом первой стадии в процессе образования угля является торф, который представляет собой разложившееся органическое вещество. Уголь образуется из торфа после того, как он покрывается осадочными породами. Эти осадочные породы называются перегруженными. Перегруженные осадки уменьшают содержание влаги в торфе.
В классификации углей используются три критерия: чистота (определяется относительным содержанием углерода в процентах); тип (определяется составом исходного растительного вещества); сортность (зависит от степени метаморфизма).
Таблица 2Содержание углерода в некоторых видах топлива и их теплотворная способность
Топливо |
Содержание углерода, % |
Теплотворная способность, кДж/кг |
Дрова |
50,0 |
19 800 |
Торф |
59,9 |
18 700 |
Лигнит |
61,8 |
20 900-25 600 |
Бурый уголь |
69,5 |
27 200 |
Каменный уголь |
78,7 |
32 100 |
Антрацит |
91,0 |
32 600 |
Самыми низкосортными видами ископаемых углей являются бурый уголь и лигнит (табл. 2). Они ближе всего к торфу и характеризуются сравнительно низким содержанием углерода и высоким содержанием влаги. Каменный уголь характеризуется меньшим содержанием влаги и широко используется в промышленности. Самый сухой и твердый сорт угля – это антрацит. Его используют для отопления жилищ и приготовления пищи.
В последнее время
благодаря техническим
Уголь, как это
изложено ниже, служит важным источником
сырья для получения
Информация о работе Процесс добычи, переработки и использования углеводородов