Происхождение материков и океанов

Автор работы: Пользователь скрыл имя, 14 Мая 2012 в 01:12, курсовая работа

Описание работы

Данная работа посвящена теме происхождения материков и океанов. В ней приведены различные геологические, геодезические и географические данные, на которых основывались те или иные гипотезы возникновения континентов и вообще земной коры.

Содержание работы

Аннотация______________________________________________________3
Введение_______________________________________________________4
Глава 1. Происхождение материков и океанов________________________5
1.1 Этап начального существования Земли до образования
земной коры____________________________________________5
1.2 Образование базальтовой земной коры до возникновения
гидросферы____________________________________________6
1.3 Формирование гранитно-метаморфической коры древних
платформ______________________________________________7
1.4 Этап формирования складчатого основания молодых
платформ______________________________________________9
1.5 Последний этап развития земной коры_____________________10
1.6 Общая направленность развития земной коры______________12
Глава 2. Особенности строения континентальной и океанической
земной коры____________________________________________14
2.1 Океаническая земная кора________________________________15
2.2 Континентальная земная кора_____________________________16
Глава 3. Движение литосферных плит_______________________________17
3.1 Сила, двигающая плиты___________________________________20
3.2 Второстепенные силы_____________________________________21
Глава 4.Гипотеза дрейфа материков_________________________________22
4.1 Альтернативные гипотезы происхождения материков и океанов_23
Заключение______________________________________________________27
Список литературы________________________________________________28

Файлы: 1 файл

Курсовая работа (готовый вариант).docx

— 2.55 Мб (Скачать файл)

       Немаловажную  роль играют эпохи складчатости  и гранитизации в середине архея, на грани архей и протерозоя, в середине и в конце рифея.

       Эпохам  складчатости нередко отводят  роль не только рубежей, но  и активных эпох, разделяющих  малоактивные периоды колебательных  движений. Вместе они составляют  геотектонические циклы, повторяющиеся  на всем протяжении истории  Земли. Движущей силы эволюции  земной коры при этом считаются  эпохи складчатости или циклы  тектогенеза, наподобие спазм, охватывающие всю земную поверхность и приводящие к складчатости осадочных и метаморфических толщ. В действительности же главная роль в создании материковой земной коры принадлежит, по крайней мере после архея, геосинклинальным процессом в целом. С ними связано образование мощных толщ вулканогенно-осадочных пород, их неоднократная складчатость, сложная эволюция магматических продуктов с преобразованием их в целую гамму изверженных и вулканических пород разного состава. Происходит их метаморфизм и гранитизация осадочных толщ. Окончание геосинклинального процесса всегда является важнейшим рубежом, однако образование гранито-метаморфического слоя земной коры происходит не только в эпоху складчатости, но и в итоге всего длительного развития геосинклинальной области.

       Если  вернуться к аналогии со строительством  здания, то здесь этапы его  сооружения отмечаются возведением  фундамента и отдельных этажей. Сходным образом создание составных  частей земной коры происходит  в течение последовательных этапов  развития, которые имеют неодинаковый  масштаб и значение в общем  процессе и разделены определенными  рубежами. [1]

 

Глава 2. Особенности строения континентальной и океанической коры

      Земнaя кopа — внешняя твёрдая обoлoчка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию границ  Мохоровичича, или coкращённо Мохо, на которой происходит резкое увеличение скоростей сейсмических волн. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Кора есть на большинстве планет земной группы, Луне и многих спутниках планет-гигантов. В большинстве случаев она состоит из базальтов. Земля уникальна тем, что обладает корой двух типов: континентальной и океанической.

Масса земной коры оценивается в 2,8×1019 тонн (из них 21 % — океаническая кора и 79 % — континентальная). Кора составляет лишь 0,473 % общей массы Земли. (Рис. 5)

 


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Рис. 5  Строение земной коры материков и океанических впадин

2.1    Океаническая земная кора

 

      Oкеаническая кора — тип земной коры, распространённый в океанах. Oт континентов кopа океанов отличается меньшей мощностью (толщиной) и базальтовым составом. Она образуется в срединно-океанических хребтах и поглощается в зонах субдукции. Древние фрагменты океанической коры, сохранившиеся в складчатых сооружениях на континентах, называются офиолитами. В срединно-океанических хребтах происходит интенсивное гидротермальное изменение океанической коры, в результате которого из неё выносятся легкорастворимые элементы.

Ежегодно в срединно-океанических хребтах формируется 3,4 км² океанической коры объёмом 24 км³ и массой 7×1010 тонн магматических пород. Средняя плотность океанической коры около 3,3 г/см³. Масса океанической коры оценивается в 5,9×1018 тонн (0,1 % от общей массы Земли, или 21 % от общей массы коры). Таким образом, среднее время обновления океанической коры составляет менее 100 млн. лет; самая древняя океаническая кора, находящаяся в ложе океана, сохранилась во впадине Пиджафета в Тихом океане и имеет юрский возраст (156 млн лет).

      Океаническая кора состоит преимущественно из базальтов и поглощаясь в зонах субдукции, превращется в эклогиты. Эклогиты имеют плотность больше, чем самые распространенные мантийные породы — перидотиты, и погружаются в глубину. Они задерживаются на границе между верхней и нижней мантией, на глубине порядка 660 километров, а затем проникают и в нижнюю мантию. Согласно некоторым оценкам, эклогиты, прежде слагавшие океаническую кору ныне составляют около 7 % массы мантии.

      Относительно небольшие фрагменты древней океанической коры могут исключаться из спрединго-субдукционного круговорота в закрытых бассейнах, замкнутых в результате коллизии континентов. Примером такого участка может быть северная часть впадины Каспийского моря, фундамент которой, по мнению некоторых исследователей, сложен океанической корой девонского возраста.

Океаническая кора может заползать  поверх континентальной коры, в результате обдукции. Так формируются самые крупные офиолитовые комплексы типа офиолитового комплекса Семаил

       Стандартная океаническая кора имеет мощность 7 км, и строго закономерное строение. Сверху вниз она сложена следующими комплексами:

  • осадочные породы, представленные глубоководными океаническими осадками.
  • базальтовые покровы, излившиеся под водой.
  • дайковый комплекс, состоит из вложенных друг в друга базальтовых даек.
  • слой основных расслоенных интрузий
  • мантия, представлена дунитами и перидотитами.

      В подошве океанической коры обычно залегают дуниты и перидотиты. Эти породы могут образоваться как в результате кристаллизации расплавов, так и быть первичными мантийными породами. Их можно различить по ориентировке зерен в породе. В породах прошедших магматическую стадию кристаллы ориентированны произвольно. В мантийных породах, претерпевших течение в конвективных ячейках, зерна ориентированны в соответствии со своими реологическими свойствами.

      Слой расслоенных интрузий образуется в срединно-океаническом хребте, в магматических камерах, расположенных на глубине 2—4 км. Эти массивы вложены друг в друга.

      Океаническая кора может иметь повышенную мощность в районах плюмового магматизма. В таких местах расположены океанические острова и океанические плато.

 

    1. Континентальная земная кора

 

      Континентальная кора или материковая земная кора - земная кора материков, которая состоит из осадочного, гранитного и базальтового пластов. Средняя толщина 35-45 км, максимальная - до 75 км (под горными массивами). Противопоставляется океанической коре, которая отлична по строению и составу.

      Континентальная  кора имеет трёхслойное строение. Верхний слой представлен прерывистым  покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена верхней корой — слоем, состоящим главным образом из гранитов игнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулит и им подобных.

      Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 0,25 — на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba — составляют 99,8 % массы земной коры.

      Определение состава  верхней континентальной коры  стало одной из первых задач,  которую взялась решать молодая  наука геохимия. Собственно из попыток решения этой задачи и появилась геохимия. Эта задача весьма сложна, поскольку земная кора состоит из множества пород разнообразного состава. Даже в пределах одного геологического тела состав пород может сильно варьировать. В разных районах могут быть распространены совершенно разные типы пород. В свете всего этого и возникла задача определения общего, среднего состава той части земной коры, что выходит на поверхность на континентах. С другой стороны, сразу же возник вопрос о содержательности этого термина.

      Первая оценка состава верхней земной коры была сделана Кларком. Кларк был сотрудником геологической службы США и занимался химическим анализом горных пород. После многих лет аналитических работ, он обобщил результаты анализов и рассчитал средний состав пород. Он предположил, что многие тысячи образцов, по сути, случайно отобранных, отражают средний состав земной коры (см. Кларки элементов). Эта работа Кларка вызвала фурор в научном сообществе. Она подверглась жёсткой критике, так как многие исследователи сравнивали такой способ с получением «средней температуры по больнице, включая морг». Другие исследователи считали, что этот метод подходит для такого разнородного объекта, каким является земная кора. Полученный Кларком состав земной коры был близок к граниту.

      Следующую попытку  определить средний состав земной  коры предпринял Виктор Гольдшмидт. Он сделал предположение, что ледник, двигающийся по континентальной коре, соскребает все выходящие на поверхность породы, смешивает их. В результате породы, отлагающиеся в результате ледниковой эрозии, отражают состав средней континентальной коры. Гольдшмидт проанализировал состав ленточных глин, отлагавшихся в Балтийском море во время последнего оледенения. Их состав оказался удивительно близок к среднему составу, полученному Кларком. Совпадение оценок, полученных столь разными методами, стало сильным подтверждением геохимических методов. [2]

 

Глава 3. Движение литосферных плит

 

 

Как в прошлые эпохи, так и  в настоящее время земная кора постоянно перемещается под влиянием тех или иных геологических сил. Ее движения можно классифицировать по различным критериям. По своей  направленности выделяют вертикальные и горизонтальные движения. Однако это деление весьма условно. Во-первых, потому что многие деформации происходят под тем или иным углом к  земной поверхности, во-вторых, горизонтальные и вертикальные движения не постоянны  и могут сменять друг друга  во времени: сжатие земной коры в горизонтальном направлении приводит к формированию складок и поднятию поверхности, а растяжение ведет к выравниванию и опусканию пород.

По скорости движения разделяют  на быстрые и медленные (вековые), протекающие постоянно. Быстрые движения (например, землетрясения) проявляются при воздействии на тектонические структуры значительных по силе, но кратковременных процессов. Медленные же обусловлены значительно меньшими по величине силами, однако их действие растянуто на многие миллионы лет. Так что нельзя сказать однозначно какие из этих движений имеют большее отражение на земной поверхности. С одной стороны быстрые, т. к. последствия землетрясений масштабны и проявляются буквально за считанные секунды; но с другой стороны изменения в рельефе да и само его формирование во многом обусловлены медленными движениями, однако они проявляются за чрезвычайно длительные сроки, что довольно сложно проследить и изучить даже теоретически, не говоря о лабораторных исследованиях, и кроме того результаты этих движений подвергаются воздействию как экзогенных процессов, так и таких же медленных тектонических движений, но противоположных по знаку. Горизонтальные движения являются более направленными, т.е. меняют знак за очень длительный период времени. Вертикальные движения наоборот более краткосрочны и часто меняют направление, в связи с чем вполне допустимо выражение – «Земля дышит».

По времени проявления различают  современные движения, идущие в настоящее  время, новейшие, приуроченные к голоцену (10–12 тыс. л.н.), неотектонические, протекавшие  в неоген-четвертичное время, движения отдаленного геологического прошлого, характерные более ранним периодам и эрам. Наиболее ярко проявились в  свое время неотектонические движения, протекавшие повсеместно; именно благодаря им горные сооружения, имевшие ранее высоту до 400 м, смогли достичь нынешних размеров. Такое вторичное рождение гор получило название – эпиплатформенный орогенез.

Изначально все породы залегают горизонтально. Именно благодаря многочисленным и разнообразным тектоническим  движениям нарушаются их положение  и ориентация в пространстве, а  исходя из формы их залегания в  настоящее время, можно делать выводы о происходящих в прошлые эпохи  геологических процессах. Все тектонические  дислокации принято делить на две  большие группы: складчатые (или  пликативные) и разрывные (или дизъюнктивные). Главное их различие заключается  в том, что в результате складчатых дислокаций происходит смятие пород  без нарушения их целостности, а  в результате разрывных целостность  залегания пород нарушается.

В результате складчатых дислокаций формируются различные структуры. Основными среди них являются синклинали – вогнутые изгибы слоев, и антиклинали – выпуклые изгибы. Однако в связи с многообразием  геологических процессов, а также  вследствие смятия пород под углом  к поверхности нередко бывает трудно выделить каждую из этих структур. Поэтому более верным будет следующий  критерий: в ядре антиклинальных складок  залегают более древние породы, в  ядре синклинальных складок –  более молодые. Нередко встречаются  и более крупные формы этих структур: антиклинории и синклинории. Также весьма распространены моносинклинали – обширные участки наклонного залегания пород, флексуры – изогнутые складки, соединяющие слои разных уровней. Различают также складки, исходя из формы и соотношения размеров. Длинные вытянутые формы, у которых длина значительно превосходит ширину, называют линейными складками. Если длина превосходит ширину в 2–5 раз, такие складки называют укороченными или брахискладками. Если параметры длины и ширины примерно равны, такие складки называют купола, если они соответствуют антиклинальной форме, и чаши (мульды), если синклинальной. Часто в ядрах куполов обнаруживаются высокопластичные породы – соли, глины и др., поднятие которых из глубины вследствие высоких температур и давления ведет к образованию этого вида складок. Иногда эти породы прорываются сквозь крылья складки и выходят на поверхность. Такие складки принято называть диапировыми складками или просто диапирами.

Информация о работе Происхождение материков и океанов