Шпаргалка по "Геологии"

Автор работы: Пользователь скрыл имя, 03 Июля 2013 в 23:31, шпаргалка

Описание работы

Работа содержит ответы на вопросы по дисциплине "Геология".

Файлы: 1 файл

геология.doc

— 277.50 Кб (Скачать файл)

Инфильтрационные  подземные воду проникают в горные породы путем просачивания атмосферных, речных, морских и озерных вод. Основную роль при этом играет проникновение в грунт через поры и трещины практически пресной атмосферной воды. Конденсационные подземные воды образуются при конденсации в порах грунта водяного пара, перемещающегося в грунте под влиянием разности давления. Седиментационные подземные воды образуются из вод того водного объекта, где происходил процесс седиментации, т.е. отложения наносов.

Эндогенные  подземные воды образуются в горных породах в результате дегидратации минералов или поступают из магматических  очагов, в частности в районах современного вулканизма.


 

 

26 Основные типы подземных  вод: зона аэрации, капиллярная  кайма, зона насыщения (инфильтрации), верховодка, грунтовые воды, межпластовые  воды (безнапорные и напорные), воды  вечной мерзлоты и трещинные  воды

 

1 воды зоны аэрации, почвенные воды, верховодка, капиллярная зона. Зона аэрации занимает верхний слой почвенно-грунтовой толщи: от земной поверхности до уровня грунтовых вод.. Через зону аэрации осуществляется взаимосвязь атмосферы и грунтовых вод. В этой зоне происходят: инфильтрация дождевых и талых вод, формирование почвенной воды и верховодки, фильтрация гравитационной воды и дедукция влаги растительностью с последующей ее транспирацией. Попадая после дождей и таяния снега в грунт, воды расходуется прежде всего на смачивание почвенного слоя и формирование почвенных вод, под которыми понимают временное скопление свободной и капиллярной воды в почвенной толще. Верховодка – временные, сезонные скопления подземных вод. Выше уровня грунтовых вод в пределах зоны аэрации располагается капиллярная воды. Воды этой зоны участвуют в питании почвенных вод и поглощаются корневой системой растений.

2 воды зоны насыщения, грунтовые  воды. Грунтовые воды – это  подземные воды первого от  поверхности постоянно существующего  водоносного горизонта, залегающего на первом выдержанном по площади водоупорном плате. Питание грунтовых вод осуществляется путем инфильтрации через зону аэрации атмосферных осадков, конденсации водяного пара и поглощения вод из водотоков и водоемов. Разгрузка грунтовых вод осуществляется в виде источников, фильтрацией в русло водотока или ложе водоема, путем испарения и перетекания в нижележащие водоносные горизонты. Грунтовые воды распространены почти повсеместно, тяготеют к рыхлым четвертичным отложениям, участвуют в питании рек, легко доступны для практического использования.

3 артезианские и глубинные воды. Артезианские воды – это напорные  подземные воды, залегающие в  водоносных горизонтах между  водоупорными пластами. Артезианские  воды залегают глубже горизонта  грунтовых вод и имеет более стабильный режим. Глубинные воды – это расположенные на больших глубинах напорные подземные воды, испытывающие воздействие геостатического давления и эндогенных сил. Глубинные воды обнаружены в глубоких зонах тектонических нарушений и в глубоких частях осадочных толщ в а артезианских бассейнах.

4 другие типы подземных вод.  Воды надмерзлотных таликов –  аналоги обычных грунтовых вод,  Эти воды представлены подрусловыми, подозерными и склоновыми таликами. Межмерзлотные безнапорные воды  сходны с обычными грунтовыми водами.


27 Движение подземных  вод: фильтрационный поток, ламинарный  и турбулентный характер движения, гидравлический градиент, закон  Дарси, источники подземных вод,  расход (дебит) плоского потока.

 

Подземные воды находятся в постоянном движении. Существует раздел гидрогеологии, изучающий закономерности движения подземных вод, который называется "Динамика подземных вод".

Законы движения подземных вод  используются при гидрогеологичеких   инженерных расчетах водозаборов, дренажей, определении притоков воды к строительным котлованам.

Подземные воды передвигаются в  основном путем инфильтрации и фильтрации.

Под инфильтрацией понимают движение воды при частичном заполнении пор  воздухом либо водяными парами.

При фильтрации движение воды происходит при полном заполнении пор(трещин) водой. Масса этой движущей воды создает фильтрационный поток.

Фильтрационные потоки различают  по характеру движения (установившийся и неустановившийся), гидравлическому  состоянию (безнапорные, напорные и  напорно-безнапорные). Движение потоков в основном ламинарное (параллельным) , в крупных трещинах и пустотах может быть турбулентным (завихряющемся). В плане фильтрационные потоки можно рассматривать как плоские и радиальные (сходящиеся (например к колодцу) и расходящиеся).

Основной закон фильтрации подземных вод - Закон фильтрации Дарси

Движение подземных вод происходит при наличии разности гидравлических уровней (напоров). Воды двигаются от мест с высокими уровнями к местам с низкими уровнями. 

Отношение разности напоров к длине пути фильтрации называется гидравлическим (напорным) градиентом. Чем градиент выше, тем больше скорость движения.

I = ΔH/l,

где ΔG = H1-H2 -  разность напоров (H);

l - длина пути фильтрации.

Фильтрация в полностью водонасыщенных водах при ламинарном (параллельном, спокойном, без завихрений) движении воды подчиняется закону Дарси.

Q = КфFI,

где Q - расход воды (кол-во фильтрующей воды через поперечное сечение F  в единицу времени);

Кф - коэффициент фильтрации;

F - площадь поперечного сечения  потока воды (водоносного пласта);

I -  Гидравлический градиент.

Введем понятие скорость фильтрации (v) - отношение расхода воды к площади поперечного сечения потока (v = Q/F). Таким образом сформулировать закон Дарси можно как "Скорость фильтрации пропорциональна напорному градиенту"

v = КфI

Коэффициент фильтрации можно таким образом можно выразить как скорость фильтрации при напорном градиенте равном единице.

Скорость фильтрации воды по представленной выше формуле не отвечает действительной скорости движения воды в породе. Это  связано с тем что вода двигается  не по всему сечению, а только через его часть, равную площади пор и трещин породы. Действительную скорость движения воды (vд) определить можно как

vд = v/n,

где n - пористость породы, выраженная в долях единицы.

Коэффициент фильтрации определяется в основном геометрией пор,  а также свойствами самой воды и пр.

Точное значение коэффициента фильтрации определяют лабораторным путем, полевым  путем и расчетным методом ( для  песков и гравелистых пород)

 

28 Определение направления  и скорости движения подземных  вод: форма движения, карта гидроизогипс, метод трех скважин, метод красителей, коэффициент фильтрации и методы его определения.

 

Определение направленности движения подземных вод.Направление движения подземных вод легко устанавливается при наличии карт гидроизогипс (либо гидроизопьез) по изучаемым водоносным горизонтам. По таким картам направление движения подземных вод определяется линиями токов, проведенным перпендикулярно, к линиям равного напора гидроизогипсам или гидроизопьезам по уклону потока.По отсутствии карт, отражающих положение свободной или пьезометрической поверхности подземных вод, для определения направления их движения необходимо иметь не менее трех выработок, чтобы установить отметки уровня подземных вод. Выработки желательно располагать по углам равностороннего треугольника с длиной стороны от 50 до 200 метров(чем меньше уклон потока, тем больше расстояние между скважинами). По известным или установленным отметкам уровня подземных вод путем интерполяции составляется план изолинии свободной или изотермической поверхности определяется направление движения потока по линиям токов. Для получения надежных данных о направлениях движения потоков подземных вод следует использовать материалы режимных наблюдений(карты изолиний на различные периоды времени). Определение направления движения по картам гидроизогипс следует считать основным методом при отсутствии карт достоверных данных об отметках уровней в отдельных точках направление давления подземных вод можно устанавливать с помощью геофизических(фотографирование в скважинах конусов распространения красителя от точечного источника, метод заряженного тела, замеры интенсивности конвективного переноса тепла в разных направления от датчика, круговые измерения естественного потенциала и др.), радиоиндикаторных и других методов.

Геофизические методы определения направления движения подземных вод.Наиболее перспективными являются односкважинные методы, в том числе метод фотографирования конусов выноса от точечного источника красителя, при котором периодически фотографируются распространяющиеся от специальной капсулы конуса красителя на фоне стрелки магнитного указателя. Всего за один спуск можно наполнить до 60 снимков, направление движения подземных вод определяется по направлению конуса заноса красителя для получения надежных результатов достаточно 4-6снимков.Точность определении направления подземного потока может быть оценена величиной относительной погрешности от 3 до 20, в значительной мере погрешность зависит от скорости движения подземных вод. Метод может использоваться при скоростях фильтрации не ниже 0,5 м/сут. По времени существования конуса можно ориентировочно определить и скорость фильтрации.Этот метод значительно менее апробирован, по сравнению с радиоиндикаторным, но он несколько проще в пополнении и не требует согласования с органами санэпидемнадзора.Односкважинные методы осуществления направления движения подземных вод не рекомендуется использовать в породах с редкой и неравномерной трещиноватостью.

Индикаторные  методы определения направления  и скорости движения подземных вод.Одним из важнейших показателей миграции подземных вод является действительная скорость из движения или фильтрации Vд, которая связана со скоростью фильтрации V соотношением: Vд =V/na,(6)где na-активная в фильтрационном отношении пористость породы, равная разности между полной плотностью nи объемным содержанием связной породы nс и защемленного воздуха nз , т.е. na= no- nс- nз.при решении задач следует учитывать, что действительная скорость фильтрации, определяющая конвективный перенос вещества и тепла с фильтрационным потоком, может изменяться за счет сорбции солей и растворов , выщелачивания, фильтрация микроорганизмов и других факторов.При наличии карт гидроизогипс и данных о коэффициенте фильтрации пористости водоносных пород действительная скорость Vд может быть определена по значению скорости фильтрации с учетом(6).Однако более надежным представляется определение действительной скорости движения подземных вод с помощью специальных полезных опытов, среди которых наиболее практическое применение получили индикаторные методы, основанные на введении в испытуемый горизонт через пусковые скважины каких-либо индикаторов и определении скорости их передвижения в условиях подземного потока по времени появления индикаторов в наблюдательных скважинах.В качестве наиболее часто практикующих индикаторов используются вещества (флюоресцеин, уранин, эритрозин и др.), электролиты, радиоактивные индикаторы.Перед проведением опыта участок работ необходимо хорошо изучить в геолого-гидрогеологическом отношении. В пусковых и наблюдательных скважинах с помощью геофизических исследований раскодометрии, лабораторных работ и поинтервального опробования должны быть выделены соответствующим образом изучены и при необходимости изолированы пласты, горизонты или интервалы, подлежащиеисследованию.Наблюдательные скважины для прослеживания передвижения индикаторов закладываются ниже по потоку на расстоянии от 0,5 до 2 м в суглинистых и супесчаных породах, от 2 до 8ь в песчаных зернистых породах, от 3 до 15 в гравийно–галечных породах, от 15 до 30 в закарстованных породах. Количество наблюдательных скважин (односкважинные методы) если для таких определений используются данные наблюдений за изменением концентрации индикатора во времени или за его распространением непосредственно в пусковой скважине(фотографирование конусов распространения красителей).Появление индикатора в наблюдательных скважинах устанавливается химически, электролитическим и колориметрическим способами, при этом первые два дают наиболее надежные результаты.При химическом способе появления индикатор устанавливается по изменению его концентрации в периодически отбираемых из наблюдательных скважин конусах воды. Для более точного и обоснованного установления момента появления индикатора в наблюдательной скважине результаты определения изображаются в виде графика изменения концентрации индикаторов во времени С=F(t)/ время прохождения индикатора от пусковой скважины tмакс исчисляется с момента его запуска в пусковую скважину до момента максимальной концентрации индикатора в наблюдательной скважине. Изменение концентрации индикатора С в наблюдаемой скважине во времени t : 1-точка появления индикатора в наблюдательной скважине,2-точка максимальной концентрации индикатора.Действительная скорость движения подземных вод Vд определяется как частное от деления пройденного индикатором расстояния L на время :Vд=L/ tмакс (7)Радиоиндикаторные методы.В последние годы все более широкое применение для определения направления в скорости движения подземных вод, а также для решения многих других практических задач приобретают радиоиндикаторные методы. В качестве индикаторов для мечения воды используются различные радиоизотопы. Контрольным перемещением изотопов ведется по замерам интенсивности излучения их концентрации. Возможность использования радиоактивных индикаторов низких концентрацией, их сравнительно незначительная сорбционная способность и высокая точность определений предопределяют большие перспективы применения радиоиндикаторных методов для решения гидрогеологических задач и , в частности, для определения направления и скорости движения подземных вод. Наибольшее применение в качестве индикаторов находят различные соединения.Радиоиндикаторные методы применяются в различных вариантах и модификациях.Суть односкважинного радиоиндикаторного метода заключается в проведении наблюдений за изменением во времени концентрации введенного в скважину радиоактивного индикатора. Изменения концентрации индикатора во времени и эпюры распределения его активности , получаемые с помощью зонда, опускаемого в скважину, являются основанием для определения расхода, скорости и направления движения потока подземных вод. Особенно эффективным является этот метод при импульсном поведении радиоиндикаторов.

 

29 Водозаборные и дренажные сооружения  в строительстве: приток к водозаборным сооружениям, верти-

кальный и горизонтальный водозаборы, депрессионная  воронка, радиус влияния, статический  и динамиче-

ский  уровни, водопонижение (дренаж).

Водозаборы  — это сооружения, с помощью  которых происходит захват забор  подземных вод для водоснабжения, отвод их с территорий строительства или просто в целях понижения уровней грунтовых вод. Существуют вертикальные, горизонтальные и лучевые типы подземных водозаборных сооружений.


При откачке воды из скважины вследствие трения воды о  частицы грунта происходит воронкообразное понижение уровня воды. При этом образуется воронка депрессии, имеющая в плане форму близкую к кругу, а в вертикальном разрезе воронка ограничивается кривыми депрессии. Радиус воронки, отсчитываемый от оси скважины, наз. радиусом влияния R. Он используется в многочисленных расчетах при проектировании водозаборных и дренажных сооружений. Радиус влияния зависит от дебита скважины Q м3сут, мощности грунтовой воды Н м, Кф мсут и гидравлического уклона I :

Радиус влияния  напрямую зависит от гранулометрического состава горных пород и размера пор в этих породах.

Дебит — количество воды, выдаваемое скважиной в единицу  времени. Дебит является интегральной характеристикой источника буровой  скважины, трубы, колодца и т. п., определяющей его способность генерировать продукт, при заданном режиме эксплуатации, зависящей от его связей с прилегающими нефте-, газо- или водоносными слоями, истощения этих слоёв, а также сезонных колебаний для грунтовых вод. 

 

30 Режим подземных вод: факторы  формирования, баланс подземных вод, запасы


 

Режим грунтовых вод. Зеркало  грунтовых вод, количество и качество их изменяются во времени. Это тесно  связано с меняющимся количеством  инфильтрующихся атмосферных осадков. В многоводные годы при большом  количестве атмосферных осадков (включая и снеговой покров) уровень грунтовых вод повышается, а в маловодные годы понижается. При таких колебаниях некоторые слои пород то заполняются водой, то осушаются. В результате периодически появляется зона переменного насыщения, находящаяся над зоной постоянного насыщения Вместе с колебанием уровня грунтовых вод изменяется дебит источников, а иногда и химический состав. В режиме грунтовых вод определенное значение имеет также их взаимодействие с поверхностными водотоками и другими водоемами. Направленность процессов взаимодействия во всех случаях определяется соотношением уровней подземных и поверхностных вод, что связано с рядом факторов, среди которых важнейшее значение имеют климатические условия. В районах с влажным и умеренным климатом реки, как правило, дренируют подземные воды, уровень которых имеет наклон к реке, но во время половодья и паводков происходит отток воды из реки и повышение уровня грунтовых вод В этом случае реки выступают в качестве временного дополнительного источника питания подземных вод, в результате происходит сокращение или полное прекращение разгрузки грунтовых вод в бортах долины реки. После спада паводка уровень грунтовых вод, стремясь к равновесию, постепенно снижается и приобретает свой обычный уклон к реке. В районах с аридным климатом, где количество атмосферных осадков очень мало, уровень грунтовых вод нередко понижается от реки. В этих условиях происходит инфильтрация воды из рек, пополняющая подземные воды.  При изучении режима грунтовых вод важно знать: 1) высотное положение их уровня и уменьшение его во времени и по площади; 2) дебит источников; 3) количество выпадающих атмосферных осадков; 4) изменение уровня воды в поверхностных водоемах и реках, с которыми связаны грунтовые воды. Изучение этих вопросов и систематические замеры уровня грунтовой воды в колодцах и специальных буровых скважинах производятся на многочисленных режимных гидрогеологических станциях. По результатам этих замеров, соответствующих определенному времени, строятся карты гидроизогипс  на которых отражаются линии, соединяющие точки с одинаковыми абсолютными отметками уровня грунтовых вод. По карте гидроизогипс можно определить направление грунтового потока, глубину и характер залегания уровня грунтовых вод и зависимость его уклона от водопроницаемости отложений и мощности водоносного горизонта. 

Информация о работе Шпаргалка по "Геологии"