Сущность сейсморазведки

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 03:04, лекция

Описание работы

Сейсмическая разведка (сейсморазведка) это один из важнейших видов геофизической разведки земных недр, который основан на изучении особенностей распространения в земной коре искусственно возбужденных упругих волн.
Вызванные взрывом или другим способом упругие волны, распространяются во всех направлениях от источника колебаний и проникают в толщу земных недр на большие глубины.
Упругие волны в процессе распространения отражаются и преломляются. И часть упругих колебаний возвращается к поверхности Земли, где регистрируются специальной, достаточно сложной аппаратурой.

Файлы: 1 файл

Лекции по геологической интерпретации геофизических данных семестр 2 ч 1.doc

— 408.00 Кб (Скачать файл)

Для нее геологический разрез есть иерархически организованная система разномасштабных геологических тел надпородного уровня, называемых формационными объектами.

    Распространенными формационными объектами упорядоченной структуры являются циклиты. Они характеризуются закономерными изменениями мощности и литологии составляющих слоев, а следовательно - акустических свойств отражающих пачек.

Различают трансгрессивные  и регрессивные серии морских  отложений, известные как проциклиты и рециклиты соответственно. Сейсмическая волновая картина отображает направленность изменения свойств циклитов и их связь с перерывами седиментации. Последние характеризуются более или менее резкой сменой состава и свойств отложений либо выдержанными маломощными прослоями - породно-слоевыми ассоциациями.

      Согласно  концепции СФИ, следует отказаться  от случайной модели импульсной сейсмограммы типа «белого шума» и выявлять скрытую закономерность в распределении коэффициентов отражения по исследуемому разрезу.

С этой целью предложен  метод спектралыно-временного анализа (СВАН), основанный на детальном частотном сканировании волновой картины.

Она может быть представлена одной трассой временного разреза  или его небольшим фрагментом протяженностью несколько сот метров. Волновую картину фильтруют рядом нуль-фазовых полосовых фильтров с короткими временными операторами. Их частотные характеристики имеют треугольную форму и с небольшими сдвигами смешаются по оси частот в пределах спектрального диапазона регистрируемых колебаний. Таким путем получают набор из многих вариантов фильтрации исходной волновой картины, называемый СВАН-колонкой.

С ее помощью выявляют систематические изменения со временем спектрального состава отраженных волн.

В пределах циклита происходит направленное изменение гранулометрического состава и характера слоистости отложений, что сказывается на их сейсмоакустичсских свойствах. В проциклитах тонкозернистость и тонкослоистость осадков возрастают по разрезу снизу вверх и в этом же направлении, т. е. с уменьшением времени прихода соответствующих отраженных волн увеличивается преобладающая частота их спектров. Для рециклитов, отличающихся противоположными направлениями изменения свойств осадков, характерна обратная закономерность в спектральном составе наблюдаемых отраженных волн. Перерывы в осадконакоплении и наличие породно-слоевых ассоциаций между циклитами проявляются на СВАН-колонках нарушениями плавности изменения во времени спектров отражений и присутствием колебаний, устойчивых к вариациям фильтрации.

Имеющийся опыт свидетельствует о том, что количественные оценки спектрально-временного анализа служат объективной основой построения структурно-формационной модели разреза на базе историко-геологического подхода к интерпретации сейсморазведочных данных. При нефтепоисковых работах СВАН в комплексе с ГИС применяют для районирования исследуемых площадей по степени прогнозной продуктивности целевых отложений терригенного и карбонатного состава. С этой целью по СВАН-колонкам эталонных трасс временного разреза, полученных вблизи глубоких скважин, вычисляют количественные показатели, называемые спектрально-временными параметрами (СВП). Их значения сопоставляют со степенью продуктивности соответствующих отложений, вскрытых скважинами. На этом основании по сейсмическим данным выполняют прогнозирование нефтеносности целевых горизонтов на межскважинных участках.

 

Лекция № 20

Тема: Применение ядерно-геофизических методов при изучении нефтегазоперспективных территорий.

 

Ядерная геофизика объединяет физические методы поисков и разведки радиоактивных руд по их естественной радиоактивности (радиометрия) и поэлементного анализа горных пород путем изучения вызванной радиоактивности (ядерно-геофизические методы). Находясь на стыке между геофизикой и геохимией, она по своей сущности, методике и технике наблюдений относится к геофизическим методам, хотя решает некоторые геохимические задачи. Ядерная геофизика отличается "близкодействием", т.е. малой глубинностью исследований (десятки см по породе) вследствие быстрого поглощения ядерных излучений окружающими породами и воздухом. Однако продукты радиоактивного распада способны мигрировать, образуя вокруг пород и руд газовые, водные и механические ореолы рассеяния, по которым можно судить о радиоактивности коренных пород.

Основными методами радиометрии являются гамма-съемка (ГС), предназначенная для изучения интенсивности гамма-излучения, и эманационная съемка (ЭС), при которой по естественному альфа излучению почвенного воздуха определяют концентрацию в нем радиоактивного газа - радона. Гамма-методы (ГМ) служат для поисков и разведки не только радиоактивных руд урана, радия, тория и других элементов, но и парагенетически или пространственно связанных с ними нерадиоактивных полезных ископаемых (редкоземельных, металлических, фосфатных и др.). С их помощью можно определять абсолютный возраст горных пород. Гамма- и эманационную съемки используют также для литологического и тектонического картирования и решения других задач.

К ядерной геофизике  относится так называемый геокосмический метод, основанный на подземной регистрации космических мюонов (мю-мезонов).

Искусственная радиоактивность  возникает при облучении горных пород и сред гамма-квантами или  нейтронами. Измеряя те или иные характеристики наведенного поля, можно  судить о гамма- и нейтронных свойствах горных пород, которые определяются химическим составом элементов и физическими свойствами пород. Существует множество искусственных ядерно-физических методов определения химического состава и физических свойств горных пород, основанных на использовании либо нейтронов (нейтрон-нейтронные, нейтрон-гамма и др.), либо гамма-излучений (гамма-гамма, гамма-нейтронный, рентгенорадиометрический и др.).

Над многими известными месторождениями нефти и газа наблюдается понижение γ –  активности ( в основном ее радиевой составляющей).  Это явление объясняется тем, что в районах с неотектоникой породы над сводами структур более грубозернистые, чем на крыльях этих структур, поскольку в момент отложения осадков глубина бассейна на своде была меньше. Построение карт радиоактивности глубоких отложений по данным  γ – каротажа позволяет выделять зоны тектонических нарушений, по которым поднимались радиоактивные воды ил жидкие углеводороды. Из-за изменения термобарических условий уран, растворенный в водах или входящий в состав металлоорганических соединений, выпадает в осадок и обеспечивает повышенную активность зон разломов.

Метод    радиометрической съемки для поисков нефтяных месторождений впервые был применен Л.Н. Богоявлинским и А.А. Ломакиным в 1926 г. в Майкопском нефтеносном районе. Использовав ионизационную камеру, они получили аномальное поле радиоактивности над нефтяной залежью, не связанной со структурой (шнурковая залежь).

Теоретические   предпосылки  возможности применения методов  радиогеохимии при прогнозировании и поисках месторождений нефти и газа, сформулированные рядом российских и иностранных ученых (Х.Лаунберг, С.Хаддет, Л.Миллер, У.Кревс, Д.Пирсон, Д.Сикка, А.Ф.Алексеев, Р.П.Готтих и др.), основываются на теории вертикальной миграции УВ из залежей.

Продукты распада УВ — углекислый газ, вода, сероводород и другие мигрирующие в результате диффузии и фильтрации из залежи газы и воды — стимулируют эпигенетические процессы, приводящие к изменению физико-химических параметров среды, что выражается в преобразовании пород надпродуктивного комплекса, возникновении специфичных минеральных ассоциаций, нарушении окислительно-восстановительных обстановок и перераспределении некоторых химических элементов, в том числе радиоактивных.

Под воздействием эпигенетических процессов, вызванных влиянием УВ-залежей, над месторождениями нефти и газа на протяжении длительного геологического времени происходит формирование специфического радиогеохимического поля, характеризующегося своеобразными полями распределения общей радиоактивности, уровнями накопления радиоактивных элементов и характером их взаимосвязи.

Практика показывает, что радиационная производная (мощность экспозиционной дозы) над и вокруг залежей УВ варьирует в незначительном диапазоне по сравнению с фоновыми значениями. В свое время этот факт во многом обусловил ограничение применения радиогеохимических методов. Появление современной лабораторно-аналитической базы и измерительной аппаратуры, новых типов детекторов и методических приемов, позволяющих выявлять слабые изменения радиогеохимического поля, возродило интерес к применению радиогеохимических методов для прогнозирования и поисков месторождений нефти и газа.

Комплекс радиогеохимического картирования включает термолюминесцентную, радиометрическую и гамма-спектрометрическую съемки по поверхности. Плотность измерений выбирается согласно решаемым геологическим задачам, детальности исследований, масштабу объекта.

Методика термолюминесцентной радиометрической съемки разработана в Институте разведочной геофизики и геохимии (КНР)*. В качестве измерительных элементов применяются поликристаллические термолюминесцентные дозиметры (ТЛД) на основе LiF, позволяющие фиксировать суммарную составляющую радиоактивности (α, β, γ) и обладающие высокой чувствительностью. Применяемые для измерений ТЛД помещаются в водонепроницаемую упаковку. Для получения статистически достоверных результатов число дозиметров на точке измерений равно 10. Все дозиметры предварительно калибруются по чувствительности. Термолюминесцентные дозиметры на точках измерения устанавливаются на глубину 0,5-0,7 м. Время экспозиции измерительных элементов в среднем составляет 15-30 сут.

Гамма-спектрометрическая съемка проводится с применением полевых гамма-спектометров-концентрометров типа РКП-305М, РСП-101М. Измерения осуществляются в точках установки ТЛД с определением содержания К, U (по 226Ra), Th. Для статистической достоверности на каждой точке опробования производится троекратное измерение параметров.

Пункты исследований привязываются с помощью топографических карт и JPS-приемника. Ведется необходимая геологическая документация.

Полученные в результате радиогеохимической съемки данные проходят многоцелевую статистическую обработку. Значения интенсивности термолюминесценции градуируются и нормализуются. Строятся карты дозовых вариаций поля радиоактивности и распределения радиоактивных элементов, но, как правило, эти карты носят вспомогательный характер.

В качестве основных критериев при выделении прогнозных участков нефтегазоносности используются:

торий-урановое    отношение (Th/U);

показатель интенсивности перераспределения естественных радионуклидов;

интенсивность термолюминесценции.

Построение прогнозных схем нефтегазоносности    осуществляется по комплексному радиогеохимическому показателю, рассчитываемому по оригинальной методике. По степени перспективности нефтегазоносности выделяются три типа участков: с высокими, средними и низкими перспективами нефтегазоносности.

Результаты комплексного радиогеохимического картирования показывают, что радиогеохимическое поле в пределах исследованных нефтегазоносных структур имеет довольно ярко выраженные специфические особенности распределения анализируемых радиоэлементов и их интегрированного показателя — интенсивности термолюминесценции. Необходимо отметить, что поля анализируемых параметров каждого объекта при наличии ряда общих закономерностей в характере распределения радиогеохимических показателей имеют и отличительные особенности, что в каждом случае требует индивидуального подхода. Эти различия в значениях радиогеохимических показателей вызваны как размерами и глубиной залегания залежей, а соответственно, и степенью интенсивности эпигенетических  преобразований пород надпродуктивного комплекса, так и литолого-ландшафтными особенностями территорий, тектоническим строением, гидродинамическим режимом подземных вод и другими факторами.

Поля концентраций радиоактивных элементов над нефтегазовыми месторождениями характеризуются высокой степенью дифференциации в распределении К, Th, U и имеют более сложное строение, чем за их границами.

В пределах исследованных площадей четко фиксируются оси, относительно которых намечается радиогеохимическая    зональность. Учитывая довольно выдержанный литолого-фациальный состав подпочвенных геологических образований, можно с большой долей уверенности сказать, что строение радиогеохимического поля на участке локализации УВ-залежей в первую очередь обусловлено особенностями глубинного строения (в том числе тектонического) и проявленностью эпигенетических процессов (прежде всего окислительно-восстановительного характера). Тем не менее анализ только моноэлементных карт не позволяет с высокой степенью достоверности оконтуривать положение УВ-залежей.

Более четко неоднородности строения    радиогеохимического поля, вызванные  влиянием УВ-залежей, просматриваются при анализе основных компонентов комплексного радиогеохимического показателя — Th/U, интенсивности перераспределения естественных радионуклидов и интенсивности термолюминесценции.

Существование зон, характеризующихся аномальными значениями Th/U, по всей видимости, связано с резкими изменениями физико-химических параметров среды, произошедшими в результате эпигенетического воздействия  мигрирующих из залежи жидких и газообразных компонентов. Изменение окислительно-восстановительных обстановок в свою очередь послужило причиной перераспределения урана.

Информация о работе Сущность сейсморазведки