Автор работы: Пользователь скрыл имя, 09 Марта 2015 в 13:33, реферат
Геология (греч. "гео" - земля, "логос" - учение) - одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности
Одним из нескольких основных направлений в геологии является изучение вещественного состава литосферы: горных пород, минералов, химических элементов.
Ведение………………………………………………………..………………….3
Глава 1.Главные сведения о минералах и их свойства. ……………...……4
Происхождение минералов…………………………….………………....9
Глава 2.Первые открытия ............................................................................12
Глава 3. Урал- « пояс каменный».…………………………………………..23
Заключение……………………………………………………………………...27
Список литературы…………………………………………………………….28
Важным фактором, ограничивающим разнообразие лунных минералов, является отсутствие воды в химическом составе Луны. До сих пор на Луне не установлено водосодержащих минералов, и лишь в одном - гетите присутствуют гидроксильные группы. Наоборот, примерно для половины минералов, известных на Земле, характерно участие в их составе молекул воды и ОН-групп. К водосодержащим минералам относятся ~ 75% фосфатов, 65% карбонатов и около 50% силикатов .
Следует подчеркнуть, что и в настоящее время открытие нового минерала является событием в науке. Созданные природой химические соединения расширяют наши представления о формах концентрации химических элементов не только на Земле, но и на других планетах, а также о способах объединения атомов в кристаллических структурах. Анализируя состав, структуру, физические свойства минералов, их соотношения с другими минеральными видами можно воссоздать историю формирования вмещающих горных пород. Многие из открываемых минералов находят и практическое применение. Сейчас трудно представить, что еще 30 лет назад не был известен один из красивейших минералов - чароит, изделия из которого теперь можно найти во многих странах мира (рис. 2). Наконец, открытие нового минерала вносит вклад в минералогическую систематику, которая будит воображение исследователя и помогает выявить параметры, способствующие установлению связей между составом, структурой и физическими свойствами.
Следует особо отметить, что разнообразие геологических и геохимических обстановок на территории России - фактор, благоприятствующий находкам различных минералов. В качестве примера можно привести щелочные породы Кольского полуострова и Карелии, в которых установлено около 500 минералов. Это количество заметно больше числа минералов, установленных в крупнейших минералогических заповедниках мира: Стерлинг (США) - 260, Лангбан (Швеция) - более 200, Цумеб (Намибия) - более 150, Ильменские горы (Россия) - 145, Пршибрам (Чехия) - 108.
Каждый предположительно новый минерал всесторонне анализируют, после чего данные о его составе, структурных особенностях и физических свойствах направляют в комиссию по новым минералам Международной минералогической ассоциации. Одновременно исследователь, нашедший новый минерал, предлагает комиссии свой вариант его названия, которое принимают или отвергают путем тайного голосования.
Обзор утвержденных минеральных видов показывает, что названия примерно 40% из них образованы от фамилий, а иногда и просто имен каких-либо людей . Впервые такие названия начали появляться в конце XVIII века. Первым, кто ввел в минералогию персональные названия, был немецкий минералог Авраам Вернер (1750-1817), который внес большой вклад в создание минералогии как самостоятельной науки. Это нововведение было воспринято многими исследователями не слишком благожелательно. Критика использования персональных названий для минералов продолжается и сейчас. Основным ее аргументом является то, что такие названия никак не связаны со свойствами или какими-либо другими особенностями минералов. Подобная практика, по мнению известного украинского минералога А.С. Поваренных, была оправданна, когда финансирование науки почти целиком зависело от благосклонности аристократов, как это было в Германии, России и некоторых других странах.
Хотя имена некоторых из этих людей стали основой для названий ряда минералов, все же в большинстве названий увековечены имена ученых, и в первую очередь тех, которые связаны с изучением Земли. Это минералоги, кристаллографы, геологи, петрологи, геохимики, горные инженеры, а также коллекционеры и торговцы минералами. Есть минералы, названные в честь ученых других специальностей - химиков, физиков, математиков, астрономов, медиков, а также в честь писателей, поэтов, философов, путешественников, политических деятелей. Например, фосфат беловит, назван в честь академика Н.В. Белова, который основал российскую школу рентгеноструктурного анализа, а Са-борат колеманит - в честь американского коммерсанта У. Коллемана, основателя промышленности по добыче бора в Калифорнии. Один из широко распространенных слюдяных минералов - биотит ,назван в честь французского физика Жана Батиста Био, изучавшего магнетизм и оптику и совместно с Д. Брюстером, открывшим в кристаллах оптическую двуосность. К этой группе можно отнести и минералы, названные в честь В. Рентгена, описавшего в 1895 году новый вид электромагнитных волн, П. Кюри, открывшего полоний и радий, А. Беккереля, установившего радиоактивность урана и его солей.
Некоторые минералы названы в честь исследователей и путешественников, а также в честь космонавтов, исследовавших Космос и Луну. Так, структурно связанный с флюоритом CaF2 гагаринит - редкоземельный катион) назван в честь Ю.А. Гагарина - первого человека, совершившего в 1961 году полет в Космос. Са,Zr-силикат армстронгит ,назван по имени Нила Олдена Армстронга, американского космонавта, впервые ступившего в 1961 году на поверхность Луны.
Чести быть увековеченными в названиях минералов удостаиваются не только ученые, но и личности, известные своими достижениями в других сферах человеческой деятельности. Например, гетит ,назван в честь И. фон Гёте (1749-1832), немецкого писателя, поэта и философа, который неизменно интересовался минералами и даже подарил в 1797 году одну из коллекций музею Санкт-Петербургского горного института. Некоторым минералам присвоены имена президентов США (джеферсонит, рузвельтит), первого премьер-министра Австралии Х.Э. Холта (холтит) и других политических деятелей. В 1998 году опубликованы данные по найденному на Чукотке минералу сороситу Cu(Sn, Sb), открытому российскими, финскими и украинскими исследователями и названному в честь Дж. Сороса, основателя Международного научного фонда, поддержка которого чрезвычайно важна для ученых из республик бывшего Советского Союза .
В последние годы минералам стали все чаще присваивать женские имена. Одно из них - эвеит, посвящено прародительнице человеческого рода Еве. Это название было придумано после того, как уже был открыт адамин, правда названный не в честь Адама, возлюбленного Евы, а в честь Ж.Ж. Адама (1795-1881), французского минералога, предоставившего для исследования первый образец этого минерала. Название U-силиката склодовскита происходит от девичьей фамилии М. Кюри (Склодовская), так как к тому моменту название минерала кюрит уже было связано с именем ее мужа П. Кюри. Арсенат ртути чурсинит назван в честь киноактрисы Л. Чурсиной. Известный швейцарский минералог Х. Сарп посвятил один из открытых им минералов своей жене Шанталь (шанталит). Лонсдейлит, модификация углерода, найденная в местах падений метеоритов, была названа в честь известного английского кристаллографа Кэтлин Лонсдейл, преподававшей этот предмет Маргарет Тэтчер, будущему премьер-министру Великобритании.
Названия минералов по местам их находок составляют вторую по численности группу. Некоторые из них используются с древности, как, например, магнетит названный по Магнезии - стране, граничившей с древней Македонией. В качестве примеров подобных названий можно указать везувиан, найденный на горе Везувий (Италия), или ильменит , найденный в Ильменских горах на Урале. Многие названия минералов связаны со странами, где они были впервые установлены. Среди них сульфид кубанит , а также силикаты иракит и суринамит. Минерал арагонит, ромбическая полиморфная форма , из которой состоит жемчуг, назван в честь испанской провинции Арагон.
Иногда минералы характеризуются довольно необычными названиями. Примером такого рода может служить транквиллитиит, минерал, который открыт в породах, собранных в море Спокойствия на Луне в ходе экспедиции космического корабля "Аполлон-11". Открытый в 1971 году Na,Mn-силикат раит, структура которого была определена лишь в 1997 году с использованием синхротронного излучения, назван в честь международной экспедиции (1969-1970) на папирусной лодке "Ра" под руководством норвежского путешественника Тура Хейердала.
Вместе с тем не всегда можно найти логику в присваиваемых минералам названиях. Так, вполне естественно предположить, что стронцианит SrCO3 - минерал, получивший название в связи с присутствием в его составе стронция. Однако этот минерал был назван по месту его находки в районе Строншиан, в Шотландии. Позже было установлено, что в нем содержится неизвестный в то время элемент, которому впоследствии было присвоено название стронций. Таким же образом ранее неизвестный химический элемент, открытый в берилле, получил название бериллия. Среди наиболее крупных кристаллов различных минералов кристалл берилла, найденный на о-ве Мадагаскар, обладает рекордными размерами. Его длина - 18 м, диаметр - 3,5 м, а масса достигает 380 т.
Некоторые из интересных названий минералов навеяны сходством их окраски и формы с растениями или их семенами. Например, название всем хорошо знакомого полудрагоценного камня малахита происходит от греческого слова мальва, ярко-зеленый цвет листьев которого напоминает цвет малахита. Название другого ювелирного камня - граната происходит от латинского слова, обозначающего плод гранатового дерева, зерна которого по форме близки кристаллам граната.
Довольно необычными и потому хорошо запоминающимися являются названия минералов, производные от имен героев мифов и легенд. Например, встречающаяся в Испании (Альмаден), Калифорнии и других странах в самородном виде ртуть (англ. mercury) названа за свою подвижность по имени римского бога Меркурия, а Ti-силикат нептунит - по имени римского бога моря Нептуна.
Предложениям о названиях новых минералов предшествует большая исследовательская работа, связанная с изучением состава, а также различных физических свойств (формы и симметрии кристаллов, их цвета, твердости, оптических характеристик и т.д.) предположительно нового минерального вида. Собственно на этой основе и шло выделение новых минералов вплоть до конца 30-х годов XX века. С того периода в науку вошел новый мощный аналитический метод, основанный на дифракции рентгеновских лучей кристаллами природных и синтетических соединений.
После демонстрации в 1912 году М. Лауэ и У.Л. и У.Г. Бреггами рентгеновской дифракции минералы стали первыми кристаллическими материалами, которые были исследованы этим методом. В настоящее время рентгенографический анализ кристаллов - один из основных методов изучения состава и структуры минералов и синтетических соединений. Вскоре после открытия рентгеновской дифракции рентгенография быстро доказала свое неоспоримое преимущество в решении многих задач, в том числе в идентификации вещества, по сравнению с химическим анализом и оптической микроскопией. Получаемая на основе рентгенографии информация во многих случаях не может быть достигнута другими аналитическими методами столь же быстро и с той же точностью. Именно поэтому рентгенография стала все шире использоваться при производственном анализе руд, сплавов, синтетических материалов, полупроводников, продуктов металлургии, а также керамической, цементной и химической областей промышленности.
Особенность рентгенографического анализа кристаллических образцов заключается в его многоцелевом назначении, позволяющем решать разные задачи, важнейшей из которых остается качественный анализ или идентификация исследуемого вещества. Основы метода были заложены У.Г. Бреггом, предложившим рассматривать дифракцию в кристалле рентгеновских лучей как отражение от полупрозрачных плоскостей-зеркал, предположительно образованных атомами. Если система параллельных плоскостей в кристалле наклонена по отношению к пучку Х-лучей, то при ее определенной ориентации волны, отраженные от соседних плоскостей, усилят друг друга .Условие этого усиления - разность хода лучей, отраженных соседними плоскостями, равна целому числу длин волн.С использованием этой формулы на основе дифракционной картины кристалла можно для каждого вещества получить набор характерных для него межплоскостных расстояний (d ). Эти величины, а также интенсивности отраженных от этих плоскостей рентгеновских лучей (I ), которые фиксируются на фотопленке или специальными детекторами, являются основой для проведения диагностики исследуемого вещества.
Успешная диагностика неизвестного минерала прежде всего связана с наличием достаточного количества стандартных справочных данных, содержащих величины I и d. Необходимость создания для этой цели библиотек справочных данных была понята сразу же после получения первых рентгенограмм. Так, еще в 1919 году американский исследователь Хелл выявил на основе анализа рентгеновского снимка, что считавшийся до этого химически чистым NaF на самом деле содержал примесь NaHF2 . Однако первые такие библиотеки появились лишь в 1938 году, когда американский исследователь Дж. Ханавальт с соавторами опубликовал статью, посвященную идентификации веществ на основе рентгенофазового анализа и содержавшую рассчитанные порошковые рентгенограммы для 100 соединений. Каждая порошковая рентгенограмма стала рассматриваться как "отпечаток пальцев" химического соединения. После этого Американское общество по исследованию материалов (ASTM) провело работу по систематизации структурных данных, и в 1941 году при участии ASTM известные к тому времени рентген-дифракционные спектры были изданы в форме картотеки с ключом для поиска, схема которого была предложена Дж. Ханавальтом. Ключ включал данные по трем самым интенсивным отражениям, химическую формулу и номер карточки с полной информацией по данному соединению. В последующие годы картотека расширилась до 2500 соединений. Для ее пополнения впоследствии под эгидой ASTM был организован комитет, которому стали оказывать содействие научные организации Великобритании, Франции и Канады. Вскоре комитет приобрел функции международной организации, а в 1969 году стал полностью самостоятельным. Созданная им картотека стала называться "Порошковая дифракционная картотека объединенного комитета порошковых дифракционных стандартов" . В 1978 году 14 международных и национальных научных обществ, в первую очередь США, Германии, Канады, Австралии, Франции, Великобритании и Японии, под эгидой Международного союза кристаллографов учредили ICDD - Международный центр дифракционных данных. Началом создания базы данных ICDD - PDF-2 считается 1940 год. Она состоит из двух независимых частей, включающих сведения о неорганических и органических соединениях соответственно. С 1985 года рентгеновские данные по всем охарактеризованным этим методом соединениям стали доступны в компьютерной форме. Для получения этих данных в настоящее время используются приборы, получившие название рентгеновских дифрактометров. Число этих приборов, установленных в исследовательских лабораториях в разных странах в начале 1998 года, достигло 45 тыс., а число исследователей, использующих эту аппаратуру, оценивается в 1 млн человек.
Принцип формирования картотеки рентгеновских данных хронологический. С 1957 года начат ежегодный выпуск сетов, в которых объединяются рентгеновские данные по разным соединениям, полученные в текущем году. Начиная с 18-го сета, каждый последующий содержит данные по 1500 неорганических соединений. К 1998 года 47 сетов содержали информацию приблизительно о 106 тыс. соединений, причем темп пополнения этой картотеки непрерывно растет и в настоящее время составляет ~ 2500 соединений в год (~ 80% - неорганические соединения, а 20% - органические). Одновременно с ежегодным пополнением картотеки ведется работа по комплектации ее выборок. В разные годы издавались данные по минералам, металлам и сплавам, по наиболее распространенным соединениям.
Расширение объема рентгенографической информации привело к созданию баз данных, которые теперь распространяются на компакт-дисках. Центром хранения такой информации по неорганическим соединениям является Институт неорганической химии Университета Бонна, а по органическим соединениям - структурный банк Кембриджа. В базе данных по кристаллическим структурам неорганических соединений (ICSD - Inorganic Crystal Structure Database) Университета Бонна на начало 1998 года содержались сведения о 37 800 соединениях. Связь между обоими банками рентгенографических данных (ICDD и ICSD) открывает путь к использованию общей имеющейся в их распоряжении информации, и приведенная выше цифра 106 тыс., характеризующая число порошковых рентгеновских спектров в PDF-2, включает и базу данных ICSD. Сама база PDF-2 насчитывает на начало 1998 года сведения по 65 907 соединениям, в том числе 47 800 порошковых спектров относятся к неорганическим, а 19 400 - к органическим соединениям. Область использования баз данных значительно расширяется благодаря тому, что на основе содержащихся в них сведений можно получить на дисплее компьютера объемное изображение, а также любое сечение структуры рассматриваемого вещества.
Обычно вслед за открытием нового минерала исследователь пытается определить его место среди ранее известных минеральных видов. Классификация минералов развивалась на протяжении столетий, а критерии, положенные в ее основу, изменялись по мере развития минералогии. В древние эпохи в основе систематики минералов лежали области их практического использования. Таким образом, в IV-III веках до нашей эры начиная с древнегреческого философа и естествоиспытателя Теофраста и вплоть до I века н.э. (римский ученый Г. Плиний) минералы разделялись на драгоценные камни, руды, краски и т.д. В средние века арабский ученый Гебер (Джабир ибн Хайана, 721-803) предложил систематику, основанную на внешнем облике кристаллов и их физических свойствах, таких, как твердость, температура плавления, растворимость, спайность и др. Впоследствии эта физическая классификация, дополненная Авиценной (Абу Али Ибн Синой, 980-1037) и Г. Агриколой (1494-1555), просуществовала вплоть до середины XVIII века.