Автор работы: Пользователь скрыл имя, 15 Декабря 2011 в 15:08, реферат
В данной работе я поставила следующие задачи:
- охарактеризовать концепцию атомизма в широкой исторической перспективе;
- рассмотреть мегамир в его многообразии и единстве;
- охарактеризовать современную картину происхождения Вселенной.
1. Введение………………………………………………………………………….…..3
2. Революция в естествознании и возникновение учения о строении атома………4
3. Дальнейшее развитие концепции атомизма……………………………………....6
4. Кварковая модель адронов……………………………………………………...…9
5. Мегамир в его многообразии и единстве. Состав и строение мегамира……....11
6. Время мегамира…………………………………………………………………….12
7. Эволюция Метагалактики, галактик и отдельных звезд……………………….. 14
8. Рождение Вселенной………………………………………………………………..16
9. Ранний этап эволюции Вселенной………………………………………………....19
10. Заключение………………………………………………………………………....22
11. Список использованной литературы…………
Содержание:
1. Введение…………………………………………………………
2. Революция в естествознании и возникновение учения о строении атома………4
3. Дальнейшее развитие концепции атомизма……………………………………....6
4. Кварковая
модель адронов……………………………………………………...
5. Мегамир в его многообразии и единстве. Состав и строение мегамира……....11
6. Время
мегамира…………………………………………………………
7. Эволюция
Метагалактики, галактик и
8. Рождение
Вселенной………………………………………………………
9. Ранний
этап эволюции Вселенной…………………
10. Заключение……………………………………………………
11. Список
использованной литературы……………
1.Введение
Ничтожно малый атом и бесконечно большая вселенная - что общего между ними? Это миры, в познании которых нет конца и края. И хотя наш вооруженный глаз все глубже проникает и во вселенную и в недра вещества, мы сейчас так же далеки от конца этого путешествия, как и в начале его.
К чему же, однако, путешествовать, если известно наперед, что никогда не достигнешь цели? Да и познаем ли мы мир вообще? Не обман ли чувств все, что доносят нам приборы? Слабый луч света, пришедший откуда-то издалека, - вот единственный источник наших знаний о бесконечно далеких небесных светилах. Не обманывает ли он нас? Мы не видим глазом даже молекул, лишь приборы говорят о мельчайших частичках - атомах и электронах. Как знать, насколько правдив их рассказ?
Так или примерно так рассуждают некоторые зарубежные ученые-идеалисты, отрицающие возможность познания мира. Но жизнь блестяще опровергает тех, кто не верит в могущество разума. Истинность познания проверяется практикой. И часто то, что происходит невообразимо далеко от нас, вдруг оказывается частью нашей жизни. Атом и вселенная - превосходный пример. Наука, изучая атом, нашла пути для атаки атомного ядра. Открылась новая эпоха, открылась перспектива такого энергетического могущества человека, перед которой бледнеет самая смелая фантазия. В наших лабораториях взрыв атома «доставил» космос на Землю - температуры в миллионы градусов, господствующие на звездах, получены человеком. Мы говорим теперь об освобождении атомной энергии, об атомных двигателях, кораблях и электростанциях, которым не нужны бензин, уголь и нефть.
В данной работе я поставила следующие задачи:
- охарактеризовать концепцию атомизма в широкой исторической перспективе;
- рассмотреть мегамир в его многообразии и единстве;
- охарактеризовать
современную картину
2. Революция в естествознании и возникновение учения о строении атома
Гипотезу об атомах как неделимых частицах вещества была возрождена в естествознании и прежде всего в физике и химии для объяснения таких эмпирических законов, как законы Бойля - Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и различных химических законов. В самом деле, закон Бойля - Мариотта утверждает, что объем газа обратно пропорционален его давлению, но не объясняет почему. Аналогично этому при нагревании тела его размеры увеличиваются, но эмпирический закон теплового расширения не объясняет причину такого расширения.
Очевидно,
что для такого объяснения необходимо
выйти за рамки наблюдаемых
Таким
образом, свойства наблюдаемых нами
тел и законов их поведения
мы объясняем с помощью простых
свойств невидимых атомов и молекул.
При этом свойства, более сложных
образований, какими являются молекулы,
объясняются также с помощью
атомов, так что атомы оказываются
последними, далее неразложимыми
частицами вещества, а точнее, химических
элементов. Поэтому атом в химии
обычно определяют как наименьшую часть
или единицу химического
Объяснения,
при которых свойства сложных
веществ или тел пытаются свести
к свойствам более простых
их элементов или составных
Однако
попытка сведения всех многообразных
и сложных свойств и
Впоследствии
эта модель была значительно модифицирована
известным датским физиком
Таким образом, из относительности научных истин, из того что они неполно, не целиком верно, а лишь приблизительно отражают свойства и закономерности природы, был сделан совершенно ошибочный вывод, что они вообще не являются объективными истинами, т. е. знание, содержащееся в них, не зависит от человека. Все это породило кризис в физике в конце XIX- начале XX вв., выход из которого следовало искать в переходе от старых понятий и принципов классической физики, оказавшихся неадекватными для изучения свойств материи на атомном уровне, к новым понятиям и теориям, которые бы верно отражали эти свойства и закономерности.
Такой
новой фундаментальной теорией,
как мы видели, стала квантовая
механика, которая ввела совершенно
неизвестные для классической физики
принципы дуализма волны и частицы,
неопределенности (неточности) и дополнительности,
а вместо универсальных законов прежней
физики стала широко применять статистические
законы и вероятностные методы исследования.
3. Дальнейшее развитие концепции атомизма
После того, когда физики установили, что атом не является последним кирпичиком мироздания и сам он построен из более простых, элементарных частиц, идея поиска таких частиц заняла главное место в их исследованиях. По-прежнему мысль физиков была устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных, фундаментальных частиц, которые впоследствии были названы элементарными. В строгом смысле слова такие частицы не должны содержать в себе какие-либо другие элементы. Однако в обычном употреблении физики называют элементарными такие частицы, которые не являются атомами или атомными ядрами, за исключением протона и нейтрона. Наиболее известными элементарными частицами являются электрон, фотон, пи-мезоны, мюоны, тяжелые лептоны и нейтрино. Позже были открыты частицы с весьма экзотическими названиями: странные частицы, мезоны со скрытым «очарованием», «очарованные» частицы, ипсилион -частицы, разнообразные резонансные частицы и многие другие. Общее их число превышает 350. Поэтому вряд - ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков, из которых, по предположению, построены все известные элементарные частицы. По-видимому, все частицы, которые в настоящее время считаются элементарными, являются специфическими формами существования материи, которые не объединены в ядра и атомы, вследствие чего их часто называют субъядерными частицами.
Исторически электрон был первой элементарной частицей, открытой еще в конце прошлого века известным, английским физиком Дж. Дж. Томсоном. В 1919 г. Э. Резерфорд, бомбардируя атомы б-частицами, открыл протоны. В начале века был открыт фофон, в 1932 г. такая необычная частица, как лишенный заряда нейтрон, спустя четыре года - первая античастица - позитрон, которая по массе равна электрону, но обладает положительным зарядом. В дальнейшем при исследовании космических лучей были обнаружены и другие частицы, в частности мюоны и разные типы мезонов.
С
начала 50-х годов основным средством
открытия и исследования элементарных
частиц стали ускорители заряженных
частиц. С их помощью удалось открыть
такие античастицы, как антипротон
и антинейтрон. С того времени
физики стали выдвигать гипотезы
о существовании
Одна из характерных особенностей элементарных частиц состоит в том, что они имеют крайне незначительные массы и размеры. Масса большинства из них - порядка массы протона, т. е. 1,6 х 10-24 г, а размеры порядка 10-16 см. Другое их свойство заключается в способности рождаться и уничтожаться, т. е. испускаться и поглощаться при взаимодействии с другими частицами. Мы уже приводили пример превращения пары электрон и позитрон в два фотона:
е--- + е+ > 2 Y
Подобные
же взаимопревращения происходят и
с другими элементарными
По интенсивности, с которой происходят взаимодействия между элементарными частицами, их делят на сильное, электромагнитное, слабое и гравитационное.
· Сильное взаимодействие является наиболее интенсивным и именно оно обусловливает связь между протонами и нейтронами в атомных ядрах.
· Электромагнитное взаимодействие менее интенсивно по своему характеру и определяет специфику связи между электронами и ядрами в атоме, а также между атомами в молекуле.
· Слабое взаимодействие - наименее интенсивно, оно вызывает медленно протекающее процессы с элементарными частицами, в частности распад так называемых квазичастиц.