Черные дыры

Автор работы: Пользователь скрыл имя, 14 Октября 2013 в 15:53, реферат

Описание работы

Черная дыра обладает внешним гравитационным полем. На больших расстояниях поле чёрной дыры практически не отличается от полей тяготения обычных звёзд, и движение других тел, взаимодействующих с чёрной дырой на большом расстоянии, подчиняется законам механики Ньютона. Гравитационное поле настолько сильно, что абсолютно не может испускать свет, поэтому они кажутся чёрными.
Как показывают расчёты, у вращающейся чёрной дыры вне её поверхности должна существовать область, ограниченная поверхностью статического предела, то есть эргосфера.

Файлы: 1 файл

Копия ксе - черные дыры.doc

— 195.50 Кб (Скачать файл)

Введение.

Черные дыры – объекты вселенной, которые  привлекают интерес многих учёных-астрономов. Чёрные дыры, космические объекты, существование которых предсказывает общая теория относительности. Образуются при неограниченном гравитационном коллапсе массивных космических тел (в частности, звезд с массами 40-60 MQ). Коллапс гравитационный -  катастрофически быстрое сжатие звезды под действием сил тяготения (гравитации).

Черная дыра обладает внешним  гравитационным полем. На больших расстояниях поле чёрной дыры практически не отличается от полей тяготения обычных звёзд, и движение других тел, взаимодействующих с чёрной дырой на большом расстоянии, подчиняется законам механики Ньютона. Гравитационное поле настолько сильно, что абсолютно не может испускать свет, поэтому они кажутся чёрными.

Как показывают расчёты, у  вращающейся чёрной дыры вне её поверхности  должна существовать область, ограниченная поверхностью статического предела, то есть эргосфера. Сила притяжения со стороны  чёрной дыры, действующая на неподвижное тело, помещенное в эргосферу, обращается в бесконечность. Однако эта сила конечна. Любые частицы, оказавшиеся в эргосфере, будут вращаться вокруг чёрной дыры. Наличие эргосферы может привести к потере энергии вращающейся чёрной дыры.

Как показывают квантово механические расчёты, в сильном гравитационном поле чёрных дыр могут рождаться частицы - фотоны, нейтрино, гравитоны, электрон-позитронные пары и др. В результате она излучает как чёрное тело с эффективной температурой даже тогда, когда никакое вещество на неё не падает. Энергия этого излучения черпается из энергии гравитационного поля чёрной дыры, что со временем приводит к уменьшению её массы.

Однако из-за низкой эффективности процессы квантового излучения несущественны для  массивных чёрных дыр, возникающих  в результате коллапса звёзд. На ранних (горячих и сверхплотных) этапах развития Вселенной в ней из-за неоднородного распределения вещества могли образоваться чёрные дыры с различной массой - от 10¾5 г до массы Солнца и больше. В отличие от чёрных дыр - сколлапсировавших звёзд, эти чёрные дыры получили название первичных.

Процессы квантового излучения  уменьшают массу чёрной дыры, и к настоящему времени все первичные чёрные дыры с массой меньше 1015 г должны были "испариться". Интенсивность и эффективная температура излучения чёрной дыры увеличиваются с уменьшением её массы, поэтому на последней стадии (для массы порядка 3.109 г) "испарение" чёрной дыры представляет собой взрыв. Первичные чёрные дыры, массой большей, чем 1015 г остались практически неизменными. Обнаружение первичных чёрных дыр по их излучению позволило бы сделать важные выводы о физических процессах, протекавших на ранних стадиях эволюции Вселенной.

Поиски чёрных дыр во Вселенной представляют собой  одну из актуальных задач современной  астрономии. Ученые твердо верят в то, что черные дыры действительно существуют.

Известно более 5 объектов, в состав которых, вероятно, входят черные дыры. Тем не менее, есть только косвенные подтверждения, но нет неопровержимых доказательств. Наиболее вероятным кандидатом в чёрные дыры является рентгеновский источник Лебедь Х-1, обнаруженный в начале 1970-х годов в Х-бирнарных системах. Масса источника в этой системе, которую можно оценить из наблюдаемой скорости движения оптической звезды по орбите и законов Кеплера, превышает предельное значение массы для нейтронной звезды.

 

Глава 1. Теоретические  аспекты черных дыр.

1.1. История идеи о черных дырах

Английский  геофизик и астроном Джон Мичелл (1724–1793) предположил, что в природе могут  существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция «ньютоновской» черной дыры.

Такую же идею высказал в  своей книге «Система мира» (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. Дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

Во второй раз  ученые «столкнулись» с черными  дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений только что созданной тогда Альбертом Эйнштейном релятивистской теории гравитации – общей теории относительности. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; величину rg называют «шварцшильдовским радиусом», а соответствующую поверхность – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали  возможность формирования компактных объектов (белых карликов и нейтронных звезд). Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться.

В 1934 в США астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой  носитель информации не способен выйти  из-под горизонта событий, внутренняя часть черной дыры причинно не связана  с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин «черная дыра», предложенный в 1967 американским физиком Джоном Арчибальдом Уилером. 
1.2. Формирование черных дыр

Самый очевидный  путь образования черной дыры –  коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас  ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с  этими расчетами: все компоненты двойных звездных систем, проявляющие  свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца) могут находиться в ядрах крупных галактик. Хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м.

Существует  гипотетическая возможность рождения микроскопических черных дыр при  взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

 

Глава 2. Особенности  черные дыры.

2.1. Свойства чёрных дыр

Изучая фундаментальные  свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. В рамках наиболее популярной сейчас теории гравитации – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной  дыры время течет медленнее,  чем вдали от нее. 

2) Каким бы  сложным ни было исходное тело, после его сжатия в черную  дыру внешний наблюдатель может  определить только три его  параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.) в ходе коллапса "стираются".

Образовавшаяся  стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п.

3) Если исходное  тело вращалось, то вокруг черной  дыры сохраняется "вихревое" гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее.

4) Все вещество  внутри горизонта событий черной  дыры непременно падает к ее  центру и образует сингулярность с бесконечно большой плотностью.

5) С.Хоукинг открыл возможность медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика.

2.2. Виды черных дыр

А) Сверхмассивные чёрные дыры

Разросшиеся очень  массивные чёрные дыры, по современным  представлениям, образуют ядра большинства  галактик. В их число входит и  массивная чёрная дыра в ядре нашей галактики — Стрелец A*.

Американские  астрономы установили, что массы  сверхмассивных чёрных дыр могут  быть значительно недооценены. Исследователи  установили, что для того, чтобы  звёзды двигались в галактике  М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Б) Первичные чёрные дыры

Первичные чёрные дыры в настоящее время носят  статус гипотезы. Если в начальные  моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них  путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

Информация о работе Черные дыры