Автор работы: Пользователь скрыл имя, 17 Декабря 2014 в 15:55, контрольная работа
Cинергетика - это возникшее в последние десятилетие междисциплинарное научное направление, изучающее процессы самоорганизации сложных (диссипативных) систем. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее сложных и упорядоченных форм организации к более сложным и упорядоченным.
Квазары удалены от нас на миллиарды световых лет. Галактики же, в том числе и галактики с активными ядрами, в среднем расположены ближе. Следовательно, это объекты более позднего поколения, они должны образоваться вслед за квазарами. Возможно предположение: не являются ли квазары протоядрами будущих галактик? Теми «зародышами», вокруг которых впоследствии возникают десятки и сотни миллиардов звезд, образующих звездные острова Вселенной? При попытке ответить на данные вопросы родилась гипотеза о черных дырах. Сущность ее заключается в следующем. Если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа – гравитационный коллапс. В результате сжатия растет концентрация массы. И наконец наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо было бы развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы. Излучение черной дыры оказывается «запертым» гравитацией. Черные дыры способны только поглощать излучение. На рис. 5.1 изображена воображаемая картина прохождения лучей вблизи черной дыры. Луч, проходящий на близком расстоянии от нее, поглощается, а более отдаленные лучи искривляются.
Рис. 5.1. Лучи света вблизи черной дыры
Предполагается, что образование черных дыр во Вселенной может происходить различными путями. Так, они могут возникать в результате сжатия массивных звезд на заключительных стадиях их жизни или вследствие концентрации вещества в центральных частях достаточно массивных звездных систем. В частности, высказывается предположение о том, что в ядрах галактик и квазарах могут находиться сверхмассивные черные дыры, которые и являются источником активности данных космических объектов. При поглощении черной дырой окружающего вещества его энергия падения в гравитационном поле преобразуется в другие виды энергии.
Результаты наблюдения галактики М-87 позволяют предположить, что в непосредственной близости от ее центра сконцентрирована слабосветящаяся масса, превосходящая 5 млрд. солнечных масс. Похожие результаты получены и для других галактик. Может быть, это и есть гигантские черные дыры или какие-то другие сверхплотные образования еще неизвестной нам природы. Существование черных дыр следует из общей теории относительности, и об их астрономическом открытии пока говорить еще рано.
Еще сравнительно недавно основные положения космологии базировались на идеях классической физики. Развитие рассматривалось как медленный и плавный процесс перехода от одного стационарного состояния к другому. Считалось, что звезды постепенно рассеивают свое вещество, и оно накапливается в виде гигантских туманностей. Туманности сгущаются в звезды и т. д. Однако наблюдения последних десятилетий свидетельствуют о том, что в развитии материи во Вселенной играют определенную роль и нестационарные процессы, в частности, взрывные процессы. Можно предполагать, что нестационарные процессы представляют собой своеобразные поворотные пункты в развитии космических объектов, где совершаются переходы из одного качественного состояния в другое, образуются новые небесные тела. Другими словами, возникает самоорганизация Вселенной.
Вопрос об образовании космических объектов в результате нестационарных процессов и о самоорганизации Вселенной еще окончательно не решен. Кроме того, одна из важных проблем современного естествознания состоит в том, чтобы установить, в каком физическом состоянии находилось вещество до начала расширения Метагалактики. Видимо, это было состояние чрезвычайно высокой плотности. Для описания явлений, происходящих при столь высокой плотности, современные фундаментальные физические теории, к сожалению не применимы. При таких условиях проявляются не только гравитационные, но и квантовые эффекты, характерные для процессов микромира. А теории, которая объединяла бы их, пока нет – ее предстоит еще создать.
Одно из предположений, следующих из концепции самоорганизации, заключается в том, что первоначальный сгусток материи возник из физического вакуума. Физический вакуум, как уже отмечалось, – своеобразная форма материи, способная при определенных условиях «рождать» вещественные частицы без нарушения законов сохранения материи и движения.
Вселенная в широком смысле – это среда нашего обитания. Поэтому немаловажное значение для практической деятельности человека имеет то обстоятельство, что во Вселенной господствует необратимые физические процессы, что она изменяется с течением времени, находится в постоянном развитии. Человек приступил к освоению космоса, наши свершения приобретают все больший размах, глобальные и даже космические масштабы. И для того, чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в состояние среды нашего обитания, в том числе и космической, мы должны изучать не только земные явления и процессы, но и закономерности космического масштаба.
Для направленного развития любая система должна обладать способностью накапливать, хранить и использовать информацию, а это означает, что неотъемлемой частью самоорганизации является ее информативность. В этом вопросе пока много неясного. В то же время на сегодняшний день удалось выяснить принцип решения природой хранения и передачи информации лишь на одном примере – на примере генного механизма, управляющего структурой и направлением развития живых систем.
Все живые организмы – высокоупорядоченные системы.
Хакен выделил коллективные процессы во всех самоорганизующихся системах: молекулы в узлах кристаллической решётки, магнитные моменты в ферромагнетике, вихри внутри жидкости. Для самоорганизующихся систем атрибутами являются: сложное движение, описываемое нелинейными уравнениями и пороговый характер возникновения. Самоорганизация происходит при генерации в атомной системе. Основные свойства самоорганизующихся систем: открытость, нелинейность, диссипативность. Система должна находиться в состоянии, далёком от равновесия.
В живом мире все живые системы могут находиться в высокоупорядоченном состоянии.
Необходимые условия возникновения «самоорганизации» таковы:
обмен веществ;
• способность к самовоспроизведению;
• мутабельность.
Информативность позволяет системе любого уровня создавать, накапливать, хранить и использовать информацию, в том числе и о направлении своего развития, поэтому информативность является важным свойством самоорганизации.
Глядя на усыпанное звездами небо, человек приходит в восторг, не оставаясь равнодушным к созерцаемому. «Открылась бездна, звезд полна. Звездам числа нет, бездне – дна» – эти прекрасные строки М.В. Ломоносова, написанные на заре зарождения русской поэзии, образно и наиболее полно отражают первое впечатление, которое испытывает человек, любуясь очаровательной картиной звездного неба. Про звезды сложено множество стихов, песен. Звезды и бескрайнее небесное пространство всегда притягивали и притягивают всех: и самого обыкновенного человека, и поэта, и ученого. Но для ученых, естествоиспытателей звездное небо – не только предмет восторга и наслаждения, но и интересный, неисчерпаемый объект исследований.
В ясную погоду в безлунную ночь невооруженным глазом можно насчитать на небосводе до трех тысяч звезд. Но это лишь небольшая часть тех звезд и других космических объектов, из которых состоит Вселенная. Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки, называется Метагалактикой. По-другому, Метагалактика – охваченная астрономическими наблюдениями часть Вселенной. Она находится в пределах космологического горизонта.
Структура Вселенной – предмет изучения космологии – одной из важных отраслей естествознания, – находящейся на стыке многих естественных наук: астрономии, физики, химии и др. Главные составляющие Вселенной – галактики, представляющие собой громадные звездные системы, содержащие не менее 100 млрд. звезд. Солнце вместе с планетной системой входят в нашу Галактику, наблюдаемую в форме Млечного Пути. Кроме звезд и планет, Галактика содержит разреженный газ и космическую пыль.
Млечный Путь хорошо виден в безлунную ночь. Он кажется скоплением светящихся туманных масс, протянувшимся от одной стороны горизонта до другой. Наблюдая Млечный Путь в телескоп, мы обнаруживаем, что он состоит из множества звезд. По форме он напоминает сплюснутый шар, заполненный 150 млрд. звезд, В центре его находится ядро, от которого отходит несколько спиральных звездных ветвей, что придает нашей Галактике спиральную форму. Наша Галактика чрезвычайно велика: от одного ее края до другого световой луч путешествует около 100 тыс. земных лет. Большая часть ее звезд сосредоточена в гигантском диске толщиной около 1500 световых лет. На расстоянии около 30 тыс. световых лет от центра Галактики расположено наше Солнце.
Основное «население» Галактики – звезды. Мир звезд необыкновенно разнообразен. И хотя все звезды – раскаленные шары, подобные Солнцу, их физические характеристики различаются весьма существенно. Есть, например, звезды гиганты и сверхгиганты. По своим размерам они значительно превосходят Солнце. Объем одной из звезд в созвездии Цефея больше объема Солнца в 14 млрд. раз. Если бы эту громадную звезду можно было бы поместить на место Солнца в центре нашей планетной системы, то не только Земля, но и орбиты более далеких планет – Марса, Юпитера, даже Сатурна – оказались бы внутри такого сверхгигантского шара.
Кроме звезд-гигантов существуют и звезды-карлики, значительно уступающие по своим размерам Солнцу. Известны карлики, которые меньше Земли и даже Луны. Вещество их отличается чрезвычайно высокой плотностью. Так, если из материала одного из наиболее плотных белых карликов можно было бы изготовить гирю, равную по размерам обычной килограммовой гире, то на Земле такая гиря весила бы 4 тыс. т.
Еще большей плотностью обладают нейтронные звезды. Поперечник такой звезды, состоящей главным образом из ядерных частиц – нейтронов, составляет всего около 20–30 км, а средняя плотность вещества достигает 100 млн. т/см3. По существу нейтронная звезда – это громадное атомное ядро. Существование нейтронных звезд было теоретически предсказано еще в 30-х годах. Однако обнаружить их удалось в 1967 г. по необычайному импульсному радиоизлучению. Нейтронные звезды быстро вращаются, и радио-луч каждой вращающейся звезды регистрируется радиотелескопом как импульс радиоизлучения. В этой связи нейтронные звезды подобного типа называются пульсарами. Большинство пульсаров излучает в радиодиапазоне от метровых до сантиметровых волн. Они иногда называются радиопульсарами. Пульсары в Крабовидной туманности и ряд других излучают, кроме того, в оптическом, рентгеновском и гамма-диапазонах.
Звезды обладают различными поверхностными температурами – от нескольких тысяч до десятков тысяч градусов. Соответственно различен и цвет звезд. Сравнительно «холодные» звезды – с температурой около 3–4 тыс. градусов – красного цвета. Наше Солнце, поверхность которого «нагрета» до 6 тыс. градусов имеет желто-зеленый цвет. Самые горячие звезды – с температурой, превосходящей 12 тыс. градусов, – белые и голубоватые.
Во Вселенной наблюдаются вспышки новых и сверхновых звезд. Такие звезды в некоторый момент времени в результате бурных физических процессов неожиданно увеличиваются в объеме, «раздуваются», сбрасывают свою газовую оболочку и в течение нескольких суток выделяют чудовищное количество энергии – в миллиарды раз больше, чем излучает Солнце. Затем, исчерпав свои ресурсы, они постепенно тускнеют, превращаясь в газовую туманность. Так на месте сверхновой звезды образовалась Крабовидная туманность. Она является мощным источником излучения, что свидетельствует о происходящих внутри нее интенсивных процессах.
Звезды, составляющие Галактику, движутся вокруг ее центра по очень сложным орбитам. С огромной скоростью – около 250 км/с – движется в мировом пространстве и наше Солнце, увлекая за собой свои планеты. Солнечная система совершает один полный оборот вокруг галактического центра за 180 млн. лет.
Ближайшие к нашей Галактике звездные системы удалены от нас на расстояние около 150 тыс. световых лет. Они видны на небе Южного полушария как маленькие туманные пятна. Впервые их подробно описал спутник и биограф Магеллана Пигафетт во время знаменитого кругосветного путешествия. Они вошли в историю естествознания под названием Магеллановых облаков – Большого и Малого. Радиоастрономические исследования последних десятилетий показали, что Магеллановы облака – это своеобразные спутники нашей Галактики: они обращаются вместе с ней вокруг своего центра.
На расстоянии около 2 млн. световых лет от нас находится ближайшая к нашей Галактике – Туманность Андромеды. Туманность Андромеды по своему строению напоминает нашу Галактику, но значительно превосходит ее по своим размерам. Подобно нашей Галактике, Туманность Андромеды имеет спутников – две эллиптические туманности, состоящие из огромного числа звезд.
По форме и строению различают эллиптические, спиральные, шаровые и неправильной формы галактики. Почти четверть всех изученных галактик относятся к эллиптическим. Плотность распределения звезд в них равномерно убывает в направлении от центра. Самые яркие в них звезды – красные гиганты. Одна из типичных спиральных галактик показана на рис. 5.2. К ним относится наша Галактика, Туманность Андромеды и многие другие. Галактика неправильной формы не имеет центральных ядер; закономерность распределения звезд в них пока не обнаружена. В созвездии Центавра наблюдается шаровая галактика, являющаяся источником радиоизлучения.
Наша Галактика, Туманность Андромеды вместе с другими соседними звездными системами образуют Местную систему галактик. B ee состав входит 16 галактик. Поперечник ее равен 2 млн. световых лет. Звездные острова, галактики – типичные объекты Вселенной. К настоящему времени известно множество галактик во всех участках небесной сферы.
Для начала вспомним, что Солнечная система расположена в Галактике с поэтическим названием - Млечный путь.
основные факты о нашей Солнечной системе
Время образования – 4,5-5 млрд. лет назад.
В Солнечной системе осталось 8 планет. Такое решение принято 24 августа 2006 года в Праге на 26-й Ассамблее Международного астрономического союза.
Основная масса системы сосредоточена в Солнце (~99.9%), но 99% момента количества движения ("запаса вращения" системы) связано с движением планет.
Информация о работе Естественно - научные концепции развития процессов в природе