Автор работы: Пользователь скрыл имя, 17 Марта 2014 в 20:21, реферат
Фотоэлектрическим эффектом (фотоэффектом) называют группу явлений, возникающих при взаимодействии света с веществом и заключающихся либо в эмиссии электронов (внешний фотоэффект), либо в изменении электропроводимости вещества или возникновении электродвижущей силы (внутренний фотоэффект).
В фотоэффекте проявляются корпускулярные свойства света. В 1888 Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластинки последняя приобретает положительный заряд.
В 1887 г. немецкий физик Генрих Герц экспериментировал с разрядником для излучения электромагнитных волн - парой металлических шаров; при приложении разности потенциалов между ними проскакивала искра. Когда же он освещал один из шаров ультрафиолетовыми лучами, разряд усиливался. Таким образом, был обнаружен внешний фотоэффект. В 1888 г. Вильгельм Гальвакс установил, что облучённая ультрафиолетовым светом металлическая пластинка заряжается положительно. Так произошло второе открытие фотоэффекта. Третьим, не зная об опытах Герца и Гальвакса, его наблюдал в том же году итальянец Аугусто Риги. Он выяснил, что фотоэффект возможен и в металлах, и в диэлектриках. Александр Григорьевич Столетов был четвёртым учёным, независимо от других открывшим фотоэффект. Он два года исследовал новое явление и вывел его основные закономерности. Оказалось, что сила фототока, во-первых, прямо пропорциональна интенсивности падающего света, а во-вторых, при фиксированной интенсивности облучения сначала растёт по мере повышения разности потенциалов, но, достигнув определённого значения (ток насыщения), уже не увеличивается.
В 1899 г. немец Филипп Ленард и англичанин Джозеф Томсон доказали, что падающий на металлическую поверхность свет выбивает из неё электроны, движение которых и приводит к появлению фототока. Однако понять природу фотоэффекта с помощью классической электродинамики так и не удалось. Необъяснимым оставалось, почему фототок возникал лишь тогда, когда частота падающего света превышала строго определённую для каждого металла величину. Только в 1905 г. Эйнштейн превратил эту загадку в совершенно прозрачную картину. Он предположил, что электромагнитное излучение не просто испускается порциями - оно и распространяется в пространстве, и поглощается веществом тоже в виде порций - световых квантов (фотонов). Поэтому для возникновения фотоэффекта важна отнюдь не интенсивность падающего светового пучка. Главное, хватает ли отдельному световому кванту энергии, чтобы выбить электрон из вещества. Минимальную энергию, необходимую для этого, называют работой выхода А. В итоге Эйнштейн вывел уравнение фотоэффекта. Ясно, что фотоэффект может вызывать только световая волна достаточно высокой частоты, а сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества. В 1907 г. Эйнштейн сделал ещё одно уточнение квантовой гипотезы. Почему тело излучает свет только порциями? А потому, отвечал Эйнштейн, что атомы имеют лишь дискретный набор значений энергии. Таким образом, теория излучения и поглощения приняла законченный вид. В 1922 г. американец Артур Комптон обнаружил, что длинна волны рентгеновского излучения изменяется при рассеянии на электронах вещества. Но, по классической электродинамике, длина световой волны при рассеянии меняться не может! Тогда Комптон выполнил расчёт, предположив, что на электронах рассеиваются не волны, а частицы (фотоны). Результат совпал с экспериментальным. Это стало прямым доказательством реальности существования фотонов.
Электровакуумные или полупроводниковые приборы, принцип работы которых основан на фотоэффекте, называют фотоэлектронными. Рассмотрим устройство некоторых из них.
Наиболее распространенным фотоэлектронным прибором является фотоэлемент. Фотоэлемент, основанный на внешнем фотоэффекте, состоит из источника электронов -- фотокатода К, на который попадает свет, и анода А.
Вся система заключена в стеклянный баллон, из которого откачан воздух. Фотокатод, представляющий собой фоточувствительный слой, может быть непосредственно нанесен на часть внутренней поверхности баллона. На рисунке дана схема включения фотокатода в цепь.
Для вакуумных фотоэлементов рабочим режимом является режим насыщения, которому соответствуют горизонтальные участки ВАХ, полученных при разных значениях светового потока.
Основной параметр фотоэлемента -- его чувствительность, выражаемая отношением силы фототока к соответствующему световому потоку. Эта величина в вакуумных фотоэлементах достигает значения порядка 100 мкА/лм.
Для увеличения силы фототока применяют также газонаполненные фотоэлементы, в которых возникает несамостоятельный темный разряд в инертном газе, и вторичную электронную эмиссию -- испускание электронов, происходящее в результате бомбардировки поверхности металла пучком первичных электронов. Последнее находит применение в фотоэлектронных умножителях (ФЭУ).
Схема ФЭУ приведена на рис. Падающие на фотокатод К фотоны эмиттируют электроны, которые фокусируются на первом электроде (диноде) Э1. В результате вторичной электронной эмиссии с этого динода вылетает больше электронов, чем падает на него, т. е. происходит как бы умножение электронов. Умножаясь на следующих динодах, электроны в итоге образуют усиленный в сотни тысяч раз ток по сравнению с первичным фототоком.
ФЭУ применяют главным образом для измерения малых лучистых потоков, в частности ими регистрируют сверхслабую биолюминесценцию, что важно при некоторых биофизических исследованиях.
На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. Схема простейшего ЭОП приведена на рис. 4. Световое изображение объекта 1, проецированное на полупрозрачный фотокатод К, преобразуется электронное изображение 2. Ускоренные и сфокусированные электрическим полем электродов Э электроны попадают на люминесцентный экран Е. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое.
В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека.
Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить «тепловое» изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом при цветном изображении, либо светом, если изображение черно-белое. Такая техническая система, называемая тепловизором, используется в термографии.
Вентильные фотоэлементы имеют преимущество перед вакуумными, так как работают без источника тока. Один из таких фотоэлементов -- медно-закисный -- представлен на схеме рис. 5. Рис. 5.
Медная пластинка, служащая одним из электродов, покрывается тонким слоем закиси меди Сu2О (полупроводник). На закись меди наносится прозрачный слой металла (например, золото Аu), который служит вторым электродом. Если фотоэлемент осветить через второй электрод, то между электродами возникнет фото-э.д.с., а при замыкании электродов, в электрической цепи пойдет ток, зависящий от светового потока.
Чувствительность вентильных фотоэлементов достигает нескольких тысяч микроампер на люмен.
На основе высокоэффективных вентильных фотоэлементов с к.п.д., равным 15% для солнечного излучения, создают специальные солнечные батареи для питания бортовой аппаратуры спутников и космических кораблей.
Зависимость силы фототока от освещенности (светового потока) позволяет использовать фотоэлементы как люксметры, что находит применение в санитарно-гигиенической практике и при фотографировании для определения экспозиции (в экспонометрах).
Некоторые вентильные фотоэлементы (сернисто-таллиевый, германиевый и др.) чувствительны к инфракрасному излучению, их применяют для обнаружения нагретых невидимых тел, т. е. как бы расширяют возможности зрения. Другие фотоэлементы (селеновые) имеют спектральную чувствительность, близкую к человеческому глазу, это открывает возможности использования их в автоматических системах и приборах вместо глаза как объективных приемников видимого диапазона света. На явлении фотопроводимости основано и явление фоторезистора.
Простейшее фотосопротивление (рис. 6) представляет собой тонкий слой полупроводника 1 с металлическими электродами 2; 3 -- изолятор. Фотосопротивления, как и фотоэлементы, позволяют определять некоторые световые характеристики и используются в автоматических системах и измерительной аппаратуре.
Одним из наиболее важных приоритетов в развитии человечества является открытие и использование новых видов энергии, одним из которых стало открытие явления фотоэффекта. С 1876 года, когда в Великобритании был создан первый фотоэлемент, до наших дней ученые работают над совершенствованием этой технологии, повышением ее эффективности. Однако подлинная история использования полупроводниковых преобразователей началась в 1958-м, когда на третьем советском в качестве источника энергии были установлены солнечные кремниевые батареи, с тех пор основной источник энергии в космосе. В 1974 году ученые приступили к промышленному производству солнечных батарей на гетероструктурах, тогда же этими батареями стали оснащаться искусственные спутники. Сейчас в мире идет работа над удвоением мощности солнечных фотоэлектрических установок. Это наиболее перспективный способ получения и использования энергии на Земле. Пока, правда, это самый дорогой вид энергии, но в перспективе ее стоимость будет сравнима с той, что вырабатывается на атомных станциях. Тем более что такая энергия экологически безопасна и запасы ее практически неисчерпаемы. По оценкам специалистов, в 2020 году до 20 % мировой электроэнергии будет производиться за счет фотоэлектрического преобразования солнечной энергии в машиностроении, приборостроении медицине, космосе и других отраслях. Уже сейчас много направлений, на которых солнечная энергия находит широкое применение-это мобильная телефонная связь, которой необходима автономное питание антенн при отсутствии линий электропередач.