Генная инженерия и клонирование

Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 09:56, реферат

Описание работы

Эта наука является актуальной на сегодняшний день, так как ученые всего мира бьются над проблемами изучения организма живого существа, а именно человека. Перед ведущими генетиками стоят важнейшие задачи изучения возникновения, размножения и развития многих заболеваний человеческого организма. Также до сих пор решается задача по выявлению гена старения человека, по его возможному перепрограммированию и многие другие задачи, на которые наука не в силах дать точные и достоверные ответы. Генетика развивается стремительно, и уже не за горами криогенные заморозки – путешествие в будущее, клонирование и предотвращение развития многих смертоносных заболеваний, таких как ВИЧ и СПИД.

Файлы: 1 файл

КСЕ Генная инженерия и клонирование.docx

— 54.32 Кб (Скачать файл)

Введение

 

Генетика представляет собой  одну из основных, наиболее увлекательных  и вместе с тем сложных дисциплин  современного естествознания. Место  генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость. Человек всегда стремился управлять природой: структурно-функциональной организацией живых существ, их индивидуальным развитием, адаптацией к окружающей среде, регуляцией численности и т.д. Генетика ближе всего подошла к решению этих задач, вскрыв многие закономерности наследственности и изменчивости живых организмов и поставив их на службу человеческому обществу.

Этим объясняется ключевое положение генетики среди биологических  дисциплин. Человеком давно отмечены 3 явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда и многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. Так, например, установлено, что свойства наследственности и изменчивости связаны с особенностями строения молекул таких веществ, входящих в состав клеток, как нуклеиновые кислоты (ДНК и РНК) определяющие наследственную обусловленность синтеза белков и ферментов клетки.

Это направление исследований получило название «биохимическая генетика». Исследования внутриклеточных структур, таких как ядро и входящих в  них хромосом и других клеточных  органелл, показатели тесную связь  этих структур с наследственными особенностями и изменчивостью клетки и организма в целом. Это направление называется «цитогенетикой». Явление наследственности и изменчивости изучается успешно не только на молекулярном, клеточном уровнях, но и на сообществах организмов, то есть на популяциях, что составляет так называемую популяционную генетику.  С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных. Первые идеи о механизм е наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель.

Эта наука является актуальной на сегодняшний день, так как ученые всего мира бьются над проблемами изучения организма живого существа, а именно человека. Перед  ведущими генетиками стоят важнейшие задачи изучения возникновения, размножения  и развития многих заболеваний человеческого  организма. Также до сих пор решается задача по выявлению гена старения человека, по его возможному перепрограммированию и многие другие задачи, на которые наука не в силах дать точные и достоверные ответы. Генетика развивается стремительно, и уже не за горами криогенные заморозки – путешествие в будущее, клонирование и предотвращение развития многих смертоносных заболеваний, таких как ВИЧ и СПИД.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. ДНК – материальный носитель наследственности

 

В организме каждого человека – своя наследственная конституция, характерная лишь для него. Именно с этим связана тканевая несовместимость, проявляющаяся, в частности, при  пересадке органов и тканей от одного организма другому. «Чужая»  кожа, например, со своими особенными молекулами вступает в нежелательные реакции  с организмом «хозяина». Она вызывает появление белков – антител –  и в результате не «приживается». Аналогичное явление наблюдается  и при пересадке отдельных  органов.

По-иному проходят эти  процессы у однояйцевых близнецов, которые развиваются из двух клеток, образовавшихся из одной оплодотворенной яйцеклетки – зиготы. Такие близнецы всегда однополы и внешне поразительно похожи друг на друга. У однояйцевых близнецов пересадка тканей и органов вполне возможна, никакого отторжения их не происходит. Иначе и быть не может. Один и тот же комплекс всех наследственных факторов не провоцирует появления антител в их организмах.

Эти и многие другие факты  показали, что программирование синтеза  белков – главное свойство ДНК. Однако, прежде чем прийти к такому заключению, необходимо было доказать, что именно ДНК – носитель генетической информации. Первое подтверждение тому было получено при изучении явлений трансформации.

 

 История доказательства, что ДНК – носитель генетической  информации.

Явление это было открыто  в опытах с пневмококками, то есть с бактериями, вызывающими воспаление легких.  Известны две формы пневмококков: А-форма с полисахаридной капсулой и Б-форма без капсулы. Оба эти признака наследственны.

Пневмококки А-формы при  заражении ими мышей вызывают воспаление легких, от которого мыши погибают. Б-форма для них безвредна.

В 1928 году английский бактериолог  Ф.Гриффитс заражал мышей смесью, состоящей из убитых нагреванием пневмококков А-формы и живых пневмококков Б-формы. Ученый предполагал, что мыши не заболеют. Но вопреки ожиданиям подопытные животные погибли. Ф. Гриффитсу удалось выделить из тканей погибших мышей пневмококки. Все они оказались капсулированными, то есть А-формы. Следовательно, убитая форма каким-то образом передавала свои свойства живым клеткам Б-формы. Но как? С помощью какого именно вещества: полисахарида, из которого состоит капсула, белка или ДНК?

От решения этого вопроса  зависело многое, так как, установив  вещество, передающее наследственный признак – образование капсулы, можно было получить нужный ответ. Однако сделать это не удавалось довольно долго. Лишь спустя 16 лет после опытов Ф. Гриффитса, в 1944 году, американский ученый А. Эвери с сотрудниками, поставив ряд четких экспериментов, сумел с полным обоснованием доказать, что полисахарид и белок не имеют никакого отношения к передаче наследственных свойств пневмококка А-формы.

В процессе этих экспериментов  с помощью специального фермента растворили полисахаридную капсулу  убитых пневмококков А-формы и проверили, продолжают ли остатки клетки формы А передавать наследственную информацию клеткам формы Б. Оказалось, что продолжают. Стало ясно, что полисахарид как источник генетической информации отпадает.

Далее ученые при помощи других ферментов удалили из остатков пневмококков А белки и снова проверили их действие. Передача наследственной информации от А к Б продолжалась. Следовательно, и белок ни при чем.

Таким образом, методом исключения было установлено, что наследственную информацию в клетке хранит и передает молекула ДНК.  И действительно, когда  разрушили ДНК, образование капсульных форм А из бескапсульных Б прекратилась.

Явление преобразования, то есть наследственного изменения  свойств одной формы бактерий под воздействием веществ другой формы, было названо трансформацией.  Вещество же, вызывающее трансформацию, получило название трансформирующего агента. Им, как было установлено, служит ДНК.

 

Расшифровка генетической информации.

Полимерные цепи белков состоят  из мономерных звеньев – аминокислот и последовательность расположения их в белковой молекуле строго специфична. В связи с этим очевидно, Что в ДНК должна храниться информация не только о качественном и количественном составе аминокислот в молекуле данного белка, но и о последовательности их расположения. Соответственно каким-то образом должны быть закодированы в полинуклеотидной цепи ДНК каждая аминокислота и белок в целом.

Зная, что аминокислот  всего 20, а нуклеотидов – 4, легко  представить себе, что 4 нуклеотидов  явно недостаточно для кодирования 20 аминокислот. Недостаточно также  и кода из двух нуклеотидов на каждую кислоту (4 = 16). Для кодирования 20 аминокислот  необходимы группы по меньшей мере из трех нуклеотидов (4 = 64). Подобная группа, несущая информацию об одной аминокислоте в молекуле белка, называется кодоном. Весь же участок ДНК, ответственный за синтез одной молекулы белка, в целом как раз и есть ген. Значит, в гене столько кодонов, сколько аминокислот входит в состав  данного синтезируемого белка.

Синтез белков происходит на рибосомах. ДНК же локализована в  ядре, в его хромосомах. Возникает  вопрос: каким образом генетическая информация из ядра переносится в цитоплазму на рибосому?  Предположить, что ДНК сама поступает через поры ядерной мембраны, нельзя: Ведь ДНК ядер обладает огромной молекулярной массой и в связи с этим просто не может проникнуть через крошечные поры ядерной мембраны. Поэтому должны быть какие-то более мелкие молекулы – посредники, передающие генетическую информацию от ДНК к белкам.  А.Н. Белозерский и  А.Г. Спирин выдвинули соображение, что эту роль играют молекулы РНК.

Но сразу же возникает другой вопрос: как копируется информация с ДНК на более короткие молекулы РНК? Чтобы ответить на него, надо вспомнить, что в строении нуклеотида ДНК и РНК много общего. В частности, из-за сходства азотистых оснований информация с ДНК на РНК может переноситься по принципу комплиментарности, согласно которому образовывать пары могут не только нуклеотиды в системе ДНК-ДНК, но и нуклеотиды в системе ДНК-РНК.

Поскольку РНК так же, как и ДНК, содержит пуриновые  и пиримидиновые основания, на участках одной их цепей ДНК при помощи фермента РНК – полимеразы строятся комплиментарные короткие цепи РНК. Этот процесс синтеза РНК на матрице ДНК, происходящий с помощью ферментов, носит название транскрипции.  В результате процесса транскрипции закодированная в ДНК последовательность нуклеотидов, которая и представляет собой определенную генетическую информацию, передается на РНК. Транскрипция происходит на отдельных участках ДНК – генах, каждый из которых содержит набор кодонов, программирующих последовательности аминокислот в данной молекуле белка.

Рибонуклеиновая  кислота, на которой сделана копия ДНК, состоит из одной цепи нуклеотидов, у которых дезоксирибоза заменена на рибозу., а тимин (Т) заменен на урацил (У) .

Таким образом, в каждом кодоне ДНК транскрибируется в комплиментарный кодон РНК. В результате получается как бы негатив РНК с позитива – ДНК. Эта РНК, снимающая информацию с ДНК, называется информационной РНК (и-РНК).

К настоящему времени ученым удалось расшифровать кодоны для  всех аминокислот. Оказалось, что одной  аминокислоте зачастую соответствует  несколько кодонов. Такой код  называется вырожденным. Наряду с этим обнаружилось, что некоторые кодоны не кодируют ни одну аминокислоту. Их называют бессмысленными. Бессмысленные кодоны имеют очень важное значение, так как определяют границы начала и конца транскрипции, то есть границы генов в данной молекуле ДНК.

Если у прокариот гены по своей записи непрерывны, то у эукариот это далеко не так. Информация необходимая для синтеза белка, оказывается записанной с пропусками, прерывисто: гены составлены из кодирующих участков (экзонов), разделенных некодирующими последовательностями (интронами). При транскрипции таких генов интроны копируются вместе с экзонами в общую молекулу пре-мРНК. Последняя подвергается в ядре серии реакций, в ходе которых интроны вырезаются, а экзоны соединяются друг с другом своими краями. Получившаяся молекула м-РНК покидает ядро и оказывается уже во власти системы трансляции, дешифрующей нуклеотидную последовательность. Соединение аминокислот с образованием белка происходит в цитоплазме на особых частицах-рибосомах. Все это можно сравнить с фабрикой (клетка), в которой чертежи (гены) хранятся в библиотеке (ядро), а для выпуска продукции (белки) используются не сами чертежи (ДНК), а их фотокопия (мРНК). Копировальная машина (РНК-полимераза) выпускает или по одной страничке фотокопии (ген), или сразу целую главу (оперон). Изготовленные копии выдаются через специальные окошки (поры ядерной мембраны). Их затем используют на монтажных линиях (рибосомы) с дешифратором (генетический код) для получения из заготовок (аминокислот) окончательной продукции (белки).

Как же происходит сам процесс  синтеза белка?

Первый его этап связан с функционированием транспортной РНК (т-РНК). Число разновидностей этих молекул РНК равно числу основных аминокислот, то есть их 20 видов. Каждой аминокислоте соответствует определенная т-РНК и определенный фермент.

В цитоплазме клетки всегда в достаточном количестве имеются  разные аминокислоты. Из них молекула т-РНК отбирает соответствующую аминокислоту. Каждая аминокислота, прежде чем вступить в белковую цепь, с помощью специального фермента соединяется с АТФ и запасается энергией. «Подзарядившись» таким образом аминокислота связывается с т-РНК, которая переносит ее к рибосомам. Характерной чертой молекул т-РНК является наличие в их структурах антикодонов. Эта особенность обеспечивается расположением соответствующих аминокислот в той последовательности кодонов, которая зашифрована в молекуле и-РНК. Между рядом расположенными аминокислотами возникают пептидные связи и синтезируется молекула белка.

Таким образом, генетическая информация, заключенная в ДНК, реализуется  разными видами РНК в молекулах  соответствующих белков.

Процесс передачи программы, принесенной с собою молекулами и-РНК, получил название трансляции.

 

 

2. Генетика, этапы ее развития, законы генетики

 

Генетика (от греч. genesis – происхождение) – это наука, изучающая законы наследственности и изменчивости биологических организмов и способы управления ими. Генетика – одна из самых молодых ветвей науки, хотя истоки знаний о наследственности весьма древние. Представления о наследственности начали складываться еще в эпоху античности. Долгое время вопрос о природе наследственности находился в ведении эмбриологии, в которой вплоть до XVII в. господствовали фантастические и полуфантастические представления. 
            Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы – линии, а затем породы и сорта с характерными для них наследственными свойствами. 
Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности. 
Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности. Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования. 
Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов (Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название «хромосомы». В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.  
          Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый – для голосеменных, второй – для покрытосеменных. 
          В те же годы Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпевают редукцию числа хромосом ровно вдвое, а при оплодотворении – слиянии женского и мужского ядра – восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом. 
           Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины – дисциплины с собственными предметом и методами исследования. 
Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов.  
           Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего «переоткрыли» закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье «Опыты над растительными гибридами», опубликованной в «трудах» Общества естествоиспытателей в Брюнне (Чехословакия). 
            Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления: 
- признаки определяются отдельными наследственными факторами, которые передаются через половые клетки; 
- отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов. 
           Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен. 
Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции. 
           Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно – мутационно. 
           В 1903 г. датский физиолог растений В. Иоганнсен публикует работу «О наследовании в популяциях и чистых линиях», в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными  - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп – линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков. 
          На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1. 
          С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно. 
         В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм. 
         В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики – радиационной генетики, значение которой еще более выросло с открытием атомной энергии. 
           В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке. 
           В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле. 
           Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК. 
Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК. 
            В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси. 
 

Информация о работе Генная инженерия и клонирование