Автор работы: Пользователь скрыл имя, 30 Ноября 2012 в 20:14, курсовая работа
Целью данной курсовой работы является изучение темы «Элементарные частицы и структура Вселенной», рассмотрение моделей происхождения и развития Вселенной с точки зрения современных исследований.
Теоретическая часть
Введение
1. Рождение частиц по современной модели развития Вселенной.
2. Возникновение крупномасштабных Неоднородностей в Модели инфляционной Вселенной.
3. Фундаментальные постоянные в структуре Вселенной.
4. Современные исследования элементарных частиц – ключ к структуре Вселенной.
Заключение
Практическая часть
Список литературы
Достижения теория синтеза химических элементов в звездах имели большое значение в исследовании Вселенной. К началу 30-х годов знали, что большинство звезд состоят из водорода и гелия, но было неясно, откуда берется углерод. В 50-е годы Хойл предложил реакцию образования углерода из трех ядер гелия в специфических условиях центра звезды. Возможность такой реакции подтвердил американский физик У. Фаулер на ускорителе высоких энергий, а Хойл и Солпитер подвели под эти эксперименты теорию. К 1957 году Фаулер, Хойл, Маргарет и Джеффри Бербидж разработали теорию синтеза большинства химических элементов в звездных недрах из водорода и гелия. В звездной топке легкие элементы «сплавились» в тяжелые ядра, которые рассеялись в пространстве из-за взрыва Сверхновых или смерти красных гигантов. Затем цикл повторится, образуя звезды нового поколения. Однако данная теория не могла объяснить существование трех легких элементов — лития, бериллия и бора. Из-за своей неустойчивой природы эти элементы должны образовываться в газе с низкой плотностью и низкими температурами и, первоначально присутствуя в молодых звездах, должны были распадаться при сжатии и нагревании звезды. Это оставалось загадкой. Хотя содержание каждого из них составляет менее 10-9 от количества водорода, уникальное происхождение этих элементов делает их «комментаторами» истории Вселенной. Подобные варианты схем рождения элементов создавались в нескольких местах, но не были привязаны к существующим во Вселенной количественным соотношениям элементов. [8]
Сразу после Большого взрыва Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 1027 К, которые свободно превращались друг в друга. В этом сгустке существовали только гравитационное и сильное взаимодействия. Потом Вселенная стала расширяться, одновременно ее плотность и температура уменьшались. Дальнейшая эволюция Вселенной происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой — усложнением ее структур. Этапы эволюции Вселенной различаются характеристиками взаимодействия элементарных частиц и называются эрами. Самые важные изменения заняли менее трех минут.
Эра адронов.
Через 10-23 секунд Вселенная вступила в эпоху адронов, или тяжелых частиц, продолжительность которой составила 10-7 секунд. Поскольку адроны участвуют в сильных взаимодействиях, эту эпоху можно назвать эпохой сильных взаимодействий. Температура была равна 1032 К и достаточно высока для того, чтобы образовывались пары адронов: мезоны, протоны, нейтроны и т. п., а также их античастицы. Однако на заре этой эпохи температура была слишком высока, и тяжелые частицы не могли существовать в обычном виде; они присутствовали в виде своих составляющих — кварков. На данном этапе Вселенная почти полностью состояла из кварков и антикварков. Сейчас свободные кварки не наблюдаются. Однако некоторые ученые считают, что где-то еще должны остаться кварки, дошедшие до нас из тех далеких времен. В то время Вселенная состояла в основном из мезонов, нейтронов, протонов, их античастиц и фотонов; кроме того, могли присутствовать более тяжелые частицы. При этом на каждую частицу приходилась античастица, они при соударении аннигилировали, превращаясь в один или несколько фотонов. Фотоны же, в свою очередь, могли образовывать пары частиц, в результате чего Вселенная, пока пары рождались и аннигилировали примерно с одинаковой скоростью, пребывала в равновесном состоянии. Однако по мере расширения температура падала, и рождалось все меньше и меньше пар тяжелых частиц. Постепенно число аннигиляции превысило число рождений, и в результате почти все тяжелые частицы исчезли.
Наконец температура упала настолько, что пары тяжелых частиц уже не могли рождаться. Энергии хватало лишь для образования легких частиц, лептонов. Вселенная вступила в эпоху, когда в ней содержались в основном лептоны и их античастицы.
Эра лептонов.
Примерно через сотую долю секунды после Большого взрыва, когда температура упала до 100 миллиардов градусов, Вселенная вступила в эпоху лептонов, длительность которой составила 1секунду. Теперь она походила на густой суп из излучения, и лептонов, в основном электронов, позитронов, нейтрино и антинейтрино. Тогда также наблюдалось тепловое равновесие, при котором электрон-позитронные пары рождались и аннигилировали примерно с одинаковой скоростью. Но кроме того, во Вселенной находились оставшиеся от эпохи адронов в небольших количествах протоны и нейтроны — примерно по одному на миллиард фотонов. Однако в свободном состоянии нейтроны через 13 минут распадаются на протоны и электроны, т. е. происходил еще один важный процесс — распад нейтронов. Правда, температура в начале этой эпохи была еще достаточно высока для рождения нейтронов при соударении электронов с протонами, поэтому равновесие сохранялось. А вот когда температура упала до 30 миллиардов градусов, электронам уже не хватало энергии для образования нейтронов, поэтому они распадались в больших количествах.
Еще одно важное событие эры лептонов — разделение и освобождение нейтрино. Нейтрино и антинейтрино образуются в реакциях с участием протонов и нейтронов. Когда температура была достаточно высока, все эти частицы были связаны между собой, а при понижении температуры ниже определенного критического значения произошло их разделение, и все частицы свободно разлетелись в пространство.
Фотонная эра приходит позже и продолжается 1 млн лет. Основная доля массы — энергии Вселенной приходится на фотоны, которые еще взаимодействуют с веществом. В первые 5 минут эры происходили события, во многом определившие устройство нашего мира. В конце лептонной эры начались взаимные превращения протонов и нейтронов друг в друга. К началу эры фотонов количества их были примерно равными. При уменьшении температуры протонов стало больше, поскольку реакции с образованием протонов оказывались энергетически более выгодными, и, значит, более вероятными. Это определило скорости реакций, и к началу эры число нейтронов составило 15 %.
Температура в течение этой эры падает с 10 10 К до 3000 К. Нейтроны захватываются протонами, и происходит образование ядер гелия. Кроме того, за эти первые минуты некоторое количество нейтронов пошло на образование ядер бериллия и лития, а некоторое количество распалось. В результате доля гелия в веществе могла составить 1/3. Затем почти 500 тысяч лет не происходило никаких качественных изменений — шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. К концу эры Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовалось реликтовое излучение.
В итоге сформировалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» — что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.
В звездную эру, наступившую спустя 1 млн лет, при температуре 3000 К и плотности 10-18 кг/м3, начинается сложный процесс образования звезд и галактик.
Грандиозная картина процессов, схематично описанная здесь, разрабатывалась детально, особенную проработку получили самые первые доли секунды. Возможности исследования деталей процессов резко возросли с появлением быстродействующих ЭВМ с большими объемами памяти. Безусловно, эта картина повлияла на наше мироощущение и продолжает уточняться. Модель «горячего» начала объясняла происхождение химических элементов, их количественные соотношения сейчас, но образование крупномасштабных скучиваний в пространстве или существование квазаров она не объясняла.
На рисунке 1 мы можем увидеть схемы, поясняющие модель Большого взрыва.
Рисунок 1. Схемы Большого взрыва. 1,2,3,4-стадии развития взрыва.
2. Возникновение крупномасштабных неоднородностей в модели инфляционной Вселенной.
Теория Г. Гамова неоднократно
дополнялась другими
Этот, первый, этап Большого пути теперь называют фазой инфляции Вселенной, по аналогии с ростом денежной массы при инфляции в экономике. Фаза инфляции очень важна. В этот период локальные вариации температуры расширялись и сглаживались, а начальная громадная кривизна пространства резко уменьшилась. После инфляции Вселенная стала плоской.
Кроме того, эта фаза запускает
механизм образования крупных
Крупномасштабное скучивание галактик или существование самих квазаров нельзя объяснить теорией горячей Вселенной.
Квазар — космический объект сравнительно небольшого размера (не более 1 светового месяца), излучающий энергии больше, чем наша Галактика. Возможно, что это особо активные ядра огромных галактик, представленные черными дырами в 109—1012 масс Солнца.[11]
Еще Хаббл, изучая в 20 — 30-е годы распределение галактик с помощью мощнейшего тогда 100-дюймового телескопа, выявил тенденцию образования групп галактик. Он отметил, что распределение ярких галактик неоднородно в очень больших угловых масштабах. Но при усреднении по областям определенных размеров распределение однородно. Так, вблизи галактических полюсов оно практически однородно, в пределах 10—40° вообще не наблюдается ни одной галактики. Хаббл объяснил это поглощением межзвездного газа, сосредоточенного вдоль плоскости Галактики.
Космическое фоновое излучение — не единственный ключ к разгадке ранней истории Вселенной. Но почему вещество не заполняет равномерно все пространство? Ведь в крупных масштабах усреднения она однородна. Здесь теории микро- и мегамира вновь идут вместе. В теории физики элементарных частиц главный процесс — нарушение симметрии. Во Вселенной нарушение симметрии ведет к образованию космических неоднородностей.
Текстуры — это зародыши агрегатов вещества, неоднородности, появившиеся вскоре после образования Вселенной. Текстуры могли превращаться в ходе эволюции в галактики и их скопления. Они создают вариации плотности, и в этих областях гравитация более эффективно тормозит общее расширение. Если гравитация преобладает над расширением, область начинает сжиматься, увеличивая флуктуации плотности. Ньютон был уверен, что самогравитирующие облака могут возникать самопроизвольно в равномерно распределенном веществе. Но в однородной космической среде сгустки образуются не так, как кристаллы в переохлажденной жидкости. Космологи считают, что флуктуации плотности в первоначальном огненном шаре, выросшие до современных структур, не могли образоваться самопроизвольно. Поэтому они должны были быть с самого начала. [8]
Вселенная очень неоднородна, что показывают обзоры крупномасштабного распределения галактик. Но она однородна в больших масштабах. Этот вывод получен из фонового излучения, содержащего информацию о свойствах Вселенной, очень далеко разнесенных в пространстве. Эти свойства оказываются совершенно одинаковыми, хотя эти точки могут идти от самого горизонта, сейчас — с расстояния 26 млрд световых лет. Галактики имеют тенденцию к скучиванию, образуя струи и сгущения, которые окружают пустоты — войды. Пустоты достигают размеров 100 — 400 млн световых лет. Можно ожидать, что видимое распределение окажется отличным от истинного распределения материи. И говорят, что вещество во Вселенной существует в форме светящихся звезд, газовых облаков и темного вещества. Об этом свидетельствуют и наблюдения орбитальных движений звезд и газа, а масса темного вещества в виде гало составляет до 10 масс видимого объекта (его оценивают по гравитационному воздействию). Природа темного вещества пока не выяснена, некоторые считают его холодным, но оно может скучиваться под влиянием гравитации с образованием объектов от галактик до сверхскоплений.
Но почему Вселенная однородна в одних масштабах и неоднородна в других, что же послужило началом расширения пространства Вселенной? В начальный момент в точке были огромное давление и высокая температура. Давление нагретых газов вызывает интенсивное расширение — взрыв. Если взрыв происходит в воздухе, имеет место перепад давлений между горячим газом и воздухом, вызванный неоднородностью плотности расширяющегося газа. Но вещество Вселенной однородно, поэтому перепада давлений, вызывающего подталкивающую к разлету силу, нет. Огромное давление в самом начале не может служить толчком к быстрому разлету. И наоборот, большое давление ведет, согласно общей теории относительности, к дополнительному тяготению, т. е. даже замедляет расширение. Эйнштейн ввел в теорию понятие силы гравитационного отталкивания, описываемой константой Л. Модель пустой Вселенной де Ситтера допускает, что космологическая постоянная вызывает ускоренный разлет частиц вещества. По оценкам в самом начале расширения плотность вещества во Вселенной была близка к критической. Причину этого назвали «проблемой критической плотности». В теории элементарных частиц получено, что при сверхбольших энергиях возможно существование монополей, струн .
Монополи — это своеобразные частицы, которые в 1016 раз массивнее протонов, возникали в эпоху Великого объединения, но в процессе дальнейшей эволюции Вселенной они частично аннигилировали, но должны еще быть. Может, они входят в «скрытую массу» Вселенной, ведь ее плотность в 30 раз превосходит плотность обычной материи. Современная теория вакуума признает существование разных вакуумов, зависящих от способа его получения. Вообще, вакуум — это состояние с минимальным значением энергии, ниже которого уже нельзя опуститься. Если даже удалить все частицы и поля, остается состояние «кипения пустоты». Оказывается, вакуум в некоторых случаях может обладать положительной плотностью энергии, плотностью массы и отрицательным давлением (натяжением). Эти особые свойства вакуума и приводят к увеличению космологической постоянной, которая меняет ситуацию, вызывая гравитационное отталкивание. По теории А. Гута и П. Сейнхардта, раздувание очень ранней Вселенной было сильным и кратковременным. Поэтому нас будет интересовать состояние вакуума, полученного при резком охлаждении Вселенной. Раздувание должно происходить по экспоненте, если силы вакуума становятся превалирующими во Вселенной.
Силы «антигравитации» становятся больше гравитационных, и это служит первотолчком к расширению с ускорением. В 70-е гг.советские физики Д.А. Киржниц и А. Линде показали, что такие условия могут возникать во Вселенной при больших давлениях и резком снижении температуры от очень больших значений, превышающих температуру эпохи Великого объединения. Эффекты квантовой гравитации, по теории Линде, приводят к возможности возникновения вакуумоподобных состояний, когда существует гравитационное отталкивание. Согласно теориям сверхплотной материи, такие состояния могут возникать по нескольким причинам. Плотности эти соответствуют энергиям почти планковским: 1019 ГэВ = 1032 К. Такую энергию частицы имели в момент порядка 3 • 10-44 секунд. Можно вычислить, что в этот момент плотность материи р = 1097 кг/м3 и тоже называется планковской. Таким образом, в это время при условиях, близких к планковским, существовало вакуумноподобное состояние, приведшее к инфляционному раз дуванию. Все локальные скучивания в течение фазы раздувания, или инфляции, сильно расширились, все микроскопические квантовые флуктуации превратились в макроскопические вариации плотности, из которой в будущем образовались структуры. Теория фазы инфляции основана на законах квантовой механики, но квантовые флуктуации настолько велики, что приходится подгонять ряд параметров модели.
Информация о работе Элементарные частицы и структура Вселенной