Контрольная работа по "Естествознанию"

Автор работы: Пользователь скрыл имя, 15 Января 2014 в 16:49, контрольная работа

Описание работы

Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали.
Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более 104 М. Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть 99 % межзвездного газа и 1 % межзвездной пыли. У нескольких десятков звезд в настоящее время обнаружены планетные системы.

Содержание работы

1. Солнечная система и ее происхождение……………………………………………...……..3
2. Понятие естествознания, культуры, цивилизации…………………………………...……..6
3. Понятие и принципы синергетики………………………………………………………..….9
4. Клеточный уровень строения организмов, основной состав клетки……………..………11
5. Возникновение химии. Алхимия……………………………………………….…………..14
6. Методы научного познания…………………………………………………………..……..16
7. Электромагнитное воздействие………………………………………………….………….19
8. Состав атомного ядра и основные типы ядерных реакций………………………...……..21
9. Понятие сигнала, информации, информационной энтропии………………………..……23
10. Состав географической оболочки Земли, роль магнитосферы………………………….26
Список использованных источников………………………………………………….………28

Файлы: 1 файл

КСЕ.doc

— 189.00 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

8 Состав атомного ядра и основные типы ядерных реакций

 

Ядро— центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Ядра состоят из протонов и нейтронов — нуклонов.

Протон— ядро атома водорода. Нейтрон— частица, не имеющая заряда. Изотопы — атомные ядра одного и того же элемента, содержащие различное число нейтронов. Изобары — атомные ядра различных элементов, имеющие одинаковые массовые числа. Изотоны — ядра с одинаковым числом нейтронов n. Изомеры — радиоактивные ядра.

Размер ядра характеризуется его  радиусом rя = 1,25 • 10-15А1/3м, где А — атомное число ядра. Плотность ядерного вещества во всех ядрах одинакова и равна = 2,7 • 1017кг/м3.

Разница между суммой масс всех нуклонов, содержащихся в ядре, и массой ядра называется дефектом масс.

Энергией связи ядра называется энергия, необходимая для полного расщепления ядра на отдельные протоны и нейтроны (или это энергия, высвобождающаяся в процессе образования из нуклонов атомного ядра).

Сильное ядерное взаимодействие обусловлено  наличием в них ядерных сил. Ядерные силы короткодействующие, радиус их действия  м.

Ядерные силы обнаруживают зарядовую  независимость: силы взаимодействия между двумя протонами, двумя нейтронами, протоном и нейтроном одинаковы.

Ядерные силы обладают свойством насыщения (каждый нуклон взаимодействует с  ограниченным числом ближайших к нему соседних нуклонов).

Величина ядерных сил зависит от направления спинов нуклонов.

Существует несколько разновидностей ядерных реакций. Некоторые из них происходят на Земле в естественных условиях (например, под действием космических лучей и продуктов естественной радиоактивности), другие протекают в космосе (например, в недрах звёзд и Солнца), третьи — используются человеком для выработки электроэнергии, получения новых химических элементов и т. п. Существуют:

Реакции с нейтронами; реакции с  лёгкими ядрами; реакции под действием гамма-квантов; реакции под действием электронов и мюонов; реакции с участием нейтрино; реакции с участием адронов; реакции с тяжёлыми ионами

Рассмотрим подробно основной тип реакции - с нейтронами. После открытия нейтрона Энрико Ферми стал изучать ядерные реакции, вызываемые нейтронами. Так как нейтроны лишены заряда, то они беспрепятственно проникают в атомные ядра и вызывают ядерные реакции, причем ядерные превращения вызываются не только быстрыми нейтронами, но и медленными, даже эффективнее. В 1938 г. была впервые осуществлена реакция деления ядер урана нейтронами:

Для проведения данной реакции использовались изотопы урана. (Для проведения цепной реакции чистый изотоп урана непригоден).

При попадании нейтрона в ядро, оно возбуждается и начинает деформироваться, в результате чего образуются одноименно заряженные полюса.

Под действием электромагнитных сил  отталкивания между одноименно заряженными  полюсами деформация усиливается.

В итоге наступает момент, когда  электромагнитные силы отталкивания преодолевают ядерные силы притяжения и ядро рассыпается  на два осколка, которые разлетаются  со скоростями равными 1/30 скорости света. При этом освобождаются 2-3 нейтрона, так как относительное число нейтронов у возникающих при делении осколков оказывается большим, чем это допустимо для ядер атомов, находящихся в середине таблицы Менделеева. Данная реакция сопровождается выделением большой энергии (которая имеет электростатическое происхождение), так как энергия связи образовавшихся ядер оказывается большей, чем у ядер урана.

Реакция, в которой частицы вызывающие ее (нейтроны), образуются, как продукты данной реакции называется ядерной  цепной реакцией. Ядерная цепная реакция характеризуется коэффициентом размножения нейтронов.

Наименьшую массу делящегося вещества, при которой может протекать  цепная ядерная реакция, называют критической  массой. Для чистого урана, имеющего форму шара, критическая масса 50 кг (R=9 см). Если применить замедлитель нейтронов и отражающую оболочку из берилия, то критическая масса снижается до 250 г.

 

 

9 Понятие сигнала, информации, информационной энтропии

 

Понятие сигнала. В XVIII веке в теорию математики вошло понятие функции, как определенной зависимости какой-либо величины y от другой величины – независимой переменной х, с математической записью такой зависимости в виде у(х). Довольно скоро математика функций стала базовой основой теории всех естественных и технических наук. Особое значение функциональная математика приобрела в технике связи, где временные функции вида s(t), v(f) и т.п., используемые для передачи информации, стали называть сигналами.

В технических отраслях знаний термин "сигнал" (signal, от латинского signum –  знак) очень часто используется в широком смысловом диапазоне, без соблюдения строгой терминологии. Под ним понимают и техническое средство для передачи, обращения и использования информации - электрический, магнитный, оптический сигнал; и физический процесс, представляющий собой материальное воплощение информационного сообщения - изменение какого-либо параметра носителя информации (напряжения, частоты, мощности электромагнитных колебаний, интенсивности светового потока и т.п.) во времени, в пространстве или в зависимости от изменения значений каких-либо других аргументов (независимых переменных); и смысловое содержание определенного физического состояния или процесса, как, например, сигналы светофора, звуковые предупреждающие сигналы и т.п.  Все эти понятия объединяет конечное назначение сигналов. Это определенные сведения, сообщения, информация о каких-либо процессах, состояниях или физических величинах объектов материального мира, выраженные в форме, удобной для передачи, обработки, хранения и использования этих сведений.

Термин “сигнал” очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Понятие информации имеет много  определений, от наиболее широкого (информация есть формализованное отражение реального мира) до практического (сведения и данные, являющиеся объектом хранения, передачи, преобразования, восприятия и управления). В настоящее время мировая наука все больше склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира, хотя и несколько специфичному.

Наука и техника интернациональны, и используют, в основном, общепринятые термины, большинство из которых англоязычны. Термин "signal" в мировой практике является общепринятым для характеристики формы представления данных, при которой данные рассматриваются как результат некоторых измерений объекта исследований в виде последовательности значений скалярных величин (аналоговых, числовых, графических и пр.) в зависимости от изменения каких-либо переменных значений (времени, энергии, температуры, пространственных координат, и пр.). С учетом этого, в дальнейшем под термином “сигнал” в узком смысле этого слова будем понимать каким-либо образом упорядоченное отображение изменения физического состояния какого-либо объекта – материального носителя сигнала. На это формализованное отображение переносятся данные о характере изменения в пространстве, во времени или по любой другой переменной определенных физических величин, физических свойств или физического состояния объекта исследований. А так как данные содержат информацию, как об основных целевых параметрах объекта исследований, так и о различных сопутствующих и мешающих факторах измерений, то в широком смысле этого слова можно считать, что сигнал является носителем общей измерительной информации. При этом материальная форма носителей сигналов (механическая, электрическая, магнитная, акустическая, оптическая и любая другая), равно как и форма отображения данных в каких-либо физических параметрах или процессах носителей, значения не имеет. Информативным параметром сигнала может являться любой параметр носителя сигнала, функционально и однозначно связанный со значениями информационных данных.

Наиболее распространенное представление  сигналов - в электрической форме  в виде зависимости напряжения от времени U(t). Так, например, сигнал изменения напряженности магнитного поля по профилю аэросъемки – это и временная последовательность изменения электрического напряжения на выходе датчика аэромагнитометра, и запись этого напряжения на ленте регистратора, и последовательные значения цифровых отсчетов при обработке лент регистратора и вводе сигнала в ЭВМ.

 
Рис. 1  Сигнал

С математической точки зрения сигнал представляет собой функцию, т.е. зависимость  одной величины от другой, независимой переменной. По содержанию это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Энтропия источника информации. Степень неопределенности состояния  объекта (или так называемого источника информации) зависит не только от числа его возможных состояний, но и от вероятности этих состояний. При неравновероятных состояниях свобода выбора для источника ограничивается. Так, если из двух возможных состояний вероятность одного из них равна 0.999, то вероятность другого состояния соответственно равна 1-0.999 = 0.001, и при взаимодействии с таким источником результат практически предрешен.

В общем случае, в соответствии с теорией вероятностей, источник информации однозначно и полно  характеризуется  ансамблем состояний U = {u1, u2,..., uN} с  вероятностями состояний соответственно {р(u1), р(u2),..., р(uN)} при условии, что сумма вероятностей всех состояний равна 1. Мера количества информации, как неопределенности выбора дискретным источником состояния из ансамбля U, предложена К. Шенноном в 1946 году и получила название энтропии дискретного источника информации или энтропии конечного ансамбля:

H(U) = - pn log2 pn.                                             (1)

Выражение Шеннона совпадает с  выражением Больцмана для энтропии физических систем при оценке степени разнообразия их состояний. Мера энтропии Шеннона является обобщением меры Хартли на случай ансамблей с неравновероятными состояниями, в чем нетрудно убедиться, если в выражении (1) значение pn заменить значением p=1/N для ансамбля равновероятных состояний. Энтропия конечного ансамбля H(U) характеризует неопределенность, приходящуюся в среднем на одно состояние ансамбля.

Энтропия непрерывного источника  информации должна быть бесконечна, т. к. неопределенность выбора из бесконечно большого числа возможных состояний бесконечно велика.  Информационная емкость сигналов существенно зависит от типа сигналов и определяет требования к каналам передачи данных, равно как и технические характеристики каналов связи ограничивают информационную емкость сигналов, передаваемых по этим каналам.

10 Состав географической оболочки Земли, роль магнитосферы

 

Географическая оболочка Земли, включающая земную кору (литосферу), нижние слои атмосферы, гидросферу и всю биосферу, - целостная  саморазвивающаяся сложная система, находящаяся в относительно подвижном равновесии. Все составные части географической оболочки и происходящие в ней процессы тесно связаны и взаимообусловлены. Более того, отдельные ее компоненты испытывают на себе влияние всех остальных компонентов. Это зачастую полностью изменяет первоначальные свойства всей взаимодействующей системы.

Обычно среднюю мощность географической оболочки оценивают в 50-60 км. Верхняя  ее граница расположена в атмосфере  в тропопаузе, т.е. переходном слое от тропосферы к стратосфере, на высоте $-10 км в приполярных широтах, 10-12 км в умеренных, 15-16 км; в тропических и 17 км над экватором. Нижняя граница географической оболочки находится в пределах земной коры. Единого мнения о ее положении нет. Одни исследователи считают, что ее следует проводить в районе той части земной коры, где скорость распространения продольных и поперечных упругих волн скачкообразно меняется. Другие ученые относят ее к расположенным выше частям земной коры - к области,  которой происходят химические и физические преобразования минеральных веществ под действием атмосферы, гидросферы и живых организмов (к так называемой зоне гипергенеза). Эти процессы распространяются на глубину от нескольких десятков до нескольких сот метров.

Снаружи географическое пространство асимметрично охватывает Землю - оно вытянуто в направлении, обратном Солнцу (рис. 10.1). Внешний предел географического пространства представляет собой границу магнитного поля Земли - магнитосферы, которая защищает географическую оболочку от действия солнечного ветра - потока заряженной плазмы (ионизированного газа) и частиц космического (внесолнечного) происхождения. Эти частицы направляются магнитными линиями магнитосферы к геомагнитным полюсам Земли и, частично проникая в географическую оболочку, оказывают существенное влияние на развитие живых организмов. Ультрафиолетовая радиация перехватывается озоновым слоем, который служит внутренней защитой

географической оболочки, ее живых  организмов. Длинноволновая радиация (лучи света), свободно проникая в географическую оболочку, обеспечивает протекание фотосинтеза  и, следовательно, снабжение атмосферы  и океана кислородом.

Географическая оболочка опирается на географическое пространство и со стороны нижней границы (т.е. ниже границы Мохо также располагается географическое пространство). Его влияние проявляется в том, что энергия земных недр создала (и создает) неровности земной поверхности, включая материки и океанические впадины, литосферу, входящую своей внешней частью в географическую оболочку. В то же время из земных недр в географическую оболочку поступают хлоридные рассолы, определяющие химизм океана, и т.д.

Информация о работе Контрольная работа по "Естествознанию"